¢ e T N AR DT E

AT me ST

June, 1980 LIDS-R-1003 . )
m Research Supported 8y:
ONR Contract NO0014-77-C-0532 ~
o OSP No. 85552
Py
(= |
<< I
ﬁﬁ? | /
TARGET TRACKING /BASED ON BEARING
a ONLY MEASUREMENTS
-
&I
Lad
:—J i TRt w 2
Ll
- Svein Fagerlund D l l C "
S ELECTE !
= JUN 30 1981 4
D
@ifsﬁ FOR TUBLIC BELEASE
IRIBUTION WLIKITED
Laboratory for Information and Decision Systems
MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASSACHUSETTS 02139
. :
B 31 6 24 270




L "\{"fﬁf"(ﬂ‘

i

/-

June; 1989 /6‘ LIDS~R-1003 *

ity

o
F

o "‘4’!““;." -
Al g

el

S
t‘>-
. \i
WO
G‘
~

b
-

&
o

TARGET TRACKING
" BASED ON
BEARING QNLY_MEASUREMENTS y

— —

y by

/gysvein agerlund
A/S Kongsberg Vapenfabrikk,
Department F44

N-3261822n32£erg,
NORWAY /5 o ,7_ Z“ﬂféi
wa VWGP :

Visiting Research Scientist
Laboratotry for Information and Denision 4ystems
Massachusetts Institute of Technology
Cambridge, MA. 02139

WOV PR TNIe BUEASE
DISTCIBUTICN \NLINITED

Massachusetts Institute of Technology
Laboratory for Infcrmation and Decision Systems
Canbridge, MA 02139




i
i
£
&
H
B
Z
H

ACKNOWLEDGMENTS

This report represents the results of a six-month (part-time) effort
to apply different approximative nonlinear filterang techniques on target
tracking problem based on bearing only measurements.

The work was performed during the Academical Year 1979-80, when the
author enjoved his ibbatical year as Visiting Research Scientist at the
Laboratory for Inforwation and Decision Systems, Massachusetts Institute of
Technology, Camkridge, Mass.

The author's stay at MIT was sponsored by A/S Kongsberg Vapenfabrikk,
¥ongsberg, Norway, and the Royal Norwegian Council for Scientific and
Industrial Research, Oslo, Norway.

The author wishes to thank Asst. Prof. Robert R. Tenney, LILS, for
valuable input and discussions. Thanks also to LIDS' Director, Prof.
Michael Athans, who admitted the author to LIDS, and was his overall
supervisor during his stay at LIDS.

The research was supported in part by the Office of Naval Research

under contract ONR/N0O0014-77-C~0532 (MIT OSP No. 85552).

‘e

ii




i ABSTRACT

This report develops 10 different approaches to the target tracking

problem based on bearing only observations. Its purpose is to form the

basis for an extensive simulation study, aimed at achieving the best
possible tracking performance for this tracking problem. Included in
the report are also a proposed initialization routine for bearing

only trackers, and a maneuver detection algorithm with a proposed action

scheme following the maneuver detection.
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SUMMARY AND CONCLUSIONS

Ten different approximative nonlinear filtering approaches to the

target tracking prohlem based on bearing only measurements have been

developed.

These approaches include two Extended Kalman filters (Cartesian and

Polar coordinate system representaticn), two second order Gaussian rilters
(Cartesian and Pola.), f.ve different iterated Extended Kalman filters,
and one apprcach consisting of M parallel, Extended (Carti :sian) Kalman
filters.

The polar coordinate system representation of the target mction
provided the necessary insight and equations for us to attack the
initialization problem based on bearing only information. Based on the
two assumptions: 1) Straight target trajectory and 2} Noisefree bearings,
we could show that given a target range, the target velocity components
could be calculated from three consecutive bearings, with no constraints
on the observer's trajectory over the observation interval. We could also
show, that if the observer's velocity was zero, we could calculate the
target's heading exact; even if the assumed range was false.

By includ;ng a fourth bearing, and introducing the constraint that
the observer should be maneuvering during the observation interval, we
also derived the equation for calculation of range to target.

In order to take into account the fact that the observations are noisy,
a procedure for smoothing of initial range and velocity data calculated
fron a batch of bearing observations was proposed.

In order to adapt the straight trajectory filters to the curved

trajectory case, which results from a maneuvering target, we derived the
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structure for a likelihood ratio test based on the principle of comparing
the innovation sequence with its expected statistics, based on the "no
maneuvre" hypothesis. When the actual variance of the innovation sequeince
becomes consistently larger than its expected variance over the most
recent I samples, the "target maneuvre" hypothesis is accepted.

The proposed action scheme following the maneuvre detectiion included
two main features:

1. A reprocessing of the observations obtained in the time

period At prior to the maneuver detection, where At is

the nominal time delay between the :start of the maaeuvre

and its detection.

T

. Imposing limivea memory on the filter, by increasing the

(RS}

velocity elements of the covariance matrix, before the
reprocessing of observations described above takes place.

The result of this scheme will be a better utilization of the obser-
vations obtained during the target maneuvre. When the reprocessing of
the observations obtained during the time period At are finished, a dis-
crete jump to a more correct position and velocity of the state vector
at the time when the maneuvre was detected, will be the result.

The purpose of this report is to be a mathematical basis for an
extensive simulation study where the per lormance of the different filtering
approaches to bearing only tracking can be compased.

When this simulation study has been performed, we will be in the
position to give an auswer to the guestion: To what extent is it pos-
sibie to overcome the three main problems with bearing only tracking:

1) The poor degree of observability, 2) The nonlinearity of the problem,

Wb




claiming for the best possible linearization trajectory, and 3) The
target maneuvre detection and handling problem.

We have not made any efforxt to analyze and compare the computational
complexity nor the memory capacity requirements of the different filters.
The reason for this is that we didn't want these aspects of the problea

to constraint our choice of filtering avproaches at this stage.
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1. INTRODUCTION

1.1 Procblem Statement

Our objective is to investigate the target tracking problem based
on bearing observations from a single, moving observer.
Our approach will be threefold:

1. Darive different mathematical approaches to the filtering

problem for targets moving along straight trajectories,

2. Derive more optimal initialization routines based only on

bearing observations from the moving observer.

3. Derive maneuvre detection algorithms, which, tcgether
with specific action patterns following the maneuvre
detection, allows the straight trajectory filters to

adapt tc curved trajectories.
We restrict the problem to tracking in the x-y~-plane.
The observer's position, velocity and acceleration are known
functions of time, with known accuracy (10 wvalues).

The bearing sensor's accuracy is known (10).

1.2 Report OQutline

The composition of this report can be described as follows:

Chapter 2 introduces the difficulties that exists for this type of
tracking, and gives an outline of the different approaches to straight
trajectory tracking that will be developed.

In Chapter 3 we develop the mathematical equations for 10 different
filtering approaches to this tracking problem.

In Chapter 4 the initialization problem is analyzed, and necessary
equations for an initialization routine for bearing only trackers are

proposed.
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Chapter 5 gives a short resume over earlier approaches to maneuvering
target tracking, and corntinues with the detailed equations for a proposed
maneuvre detection and handling scheme for the different filtering
approaches given in Chapter 3.

The purpose of this report is to form the basis for a simulation
study, where the different tracking approaches are compared, and the fil-
tering approach wi'h the best overall performance can be selected.
Chapter 6 gives a few guidelines to be taken into account while planning

and performing this simulation study.
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2. PROBLEM ANALYSIS AND APPROACH PROPOSALS
The main problem with this type of tracking is the poor degree of
observability. It is well known that the success of this tracking

scheme depends entirely on the observer's maneuvering. Simultaneously,
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in most cases, the tracker has to be based on a maneuvering scheme
selected on other criterias than tracking performance. This is due to

reasons like:

- Narrow waters

- Not reveal the observer's position

- Not restrict the captain's decision space.

The topic of selecting the optimal maneuvre in order to maximize
the observability has, however, been treated by D.J. Murphy [1].

Another problem is the necessity to perform linearization about
the target trajectory. However, this trajectory is unknown. The pur-
pose of our tracker is to estimate this trajectory. Now, if lineari-
zation is performed about the a priori estimate of the state vector,
which is the most obvious thing to do, the utilization of observations,
when the estimated trajectory is far from the correct one, will be
poor. This is the case in the initialization phase, and after a
target maneuvre.

A proposed initialization routine for bearing only trackers will
be developed in Chapter 4.

The third main problem with this type of tracking is the maneuvre
detection and handling prcoblem. If the target performs a maneuvre
after a stable target solution is established, it is possible to detect

the occurrence of the maneuvre (after a certain period of time) without




the observer maneuvering. However, in order to arrive at the new,
post-maneuvre target course and speed, an observer maneuvre normally
has to take place. This is due to the time delay between the maneuvre
occurrence and its detection, resulting in range to target error at
the target maneuvre detection time point. Since this time delay will
vary, depending on the type and size of the target maneuvre, the range/
velocity ambigu. v cannot be resolved exactly without an observer
maneuvre. Maneuvre detection and following actions patterns will be
proposed in Chapter 5.

The question is now: How can these three problems be overcome?
Or to put it more correctly: To what extent do different approaches
to this target tracking scheme overcome these three problems?

Existing literature on the subject fail to give an answer to this
question.

Our intention is, therefore, to develop a number of different
approaches to this target tracking problem, which can form the basis
for an extensive simulation study, where the different approaches are
compared. When this simulation study is finished, our basis for giving
a reliable answer to the question above should be greatly improved.

The following 10 approaches are proposed:

1. Extended Kalman filter, Cartesian Coordinate system repre-

sentation. State vector:

x = (2.1)




observation equation:

X - X
- S

tan |\——— |+ w (2.2)
Yy - ¥

©-
1

where

X = target's x

coordinate

y = target's y -~ coordinate
vx = target's x - velocity
vY = target's y - velocity
" X, = observer's x - coordinate
E Yg = observer's Y - coordinate
é ; ¢ = bearing from observer to target rel. north.

w = observation noise

1 2, Extended Kalman filter, polar coordinate system representation.

State vector:

S A gt

X = (2.3)

Observation equation:

$=11 0 0 01x +w (2.4)
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where ¢, Vo v& and w are defined earlier, and
R = range from observer to target
3. Second order Gaussian filter, representation as in .

4. Second order Gaussian filter, representation as in 2.

5. TIterated Extended Kalman filter, representation as in 1,

iteration schenc + in Jazwinski [2], pp. 278-279.

6. Iterated Linear Filter-Smoother. Representation as in 2,

iteration scheme as in Jazwinski [2], pp. 279-281.

7. Global Iterated Filter, Representation as in 1, iteration

scheme as proposed by Jazwinski [2], pp. 281.

8. Global Iterated Filter. Representation as in 2, iteration

scheme as in 7.

9. Extended Kalman filter, Cartesian coordinate system repre~

sentation. State vector:

Fx ]

Yy
c v
X **
k=l | = (2.5)
Be-n Vyk

L kN




where

N

May be variable number > 1

c

X

State vector at sample k, representation as in 1.

State vector at sample k-N, representation as in 1.

c
-
Observation equation:

3 - xkaxsk>q
tan | ———mm— W,

¢k Y = Yox k
z = = + (2.6)
O -1 *k-N""sk-N
tan | —————— L
L Yk-N YSk“N
This scheme will process each observation twice. Details outlined in

Chapter 3.6.3 ("Serial" filter approach)

10. Parallel filter approachM filters, each with Cartesizn coordinate

system representation as in approach 1, are initialized with range

Ri = Ro +i. AR, 1i=1,2,...,M (2.7)

where Ro and AR are constants. The a priori variances on Ri for each
filter are assumed low, in order to stablize range for each filter.

The resulting state vector for this filtering scheme is given by:

~

5F lﬁ::p (R =R/z )X, . (2.8)

where the probability p(Ri = R/zk) has to be determined. Details in

Chapter 3.7.




3. SYSTEM EQUATIONS FOR THE DIFFERENT APPROACHES

We will now continue with an outline of the system and filter eguations
for the different approaches. However, special equations for tracker
initialization and for maneuvre detection and handling will not be
addressed in this chapter. These subjects will be treated in Chapter

4 and 5, respectively.

3.1 Extended Kalman filter, Cartesian Coordinate System.

The Cartesian Coordinate system representation is the most common
way to model the target motion dynamics. Several papers on target
tracking use this representation [3]1~[11], and most probably in the
majority of the existing target tracking systems of this kind in operating
order, this representation is used.

Assuming the target is nonmaneuvering, the following mathematical

model can be established:

k7 o o 1 o x [0 o
vy 0 0 o0 1 y 0 o vy
- (3.1)
- . +
v 0 0 0 O v 1 0 v
b 4 X 2
¥ 0o 0 0 O v.| o 1
D £ o - - Y - ~
- X - xs
Z = q) = tan ——— W (3.2)
Y - ¥,

The geometrical situation is depicted in Fig. 3.1:

T



Fig. 3.7. Target-Observer-Geometry.

The different variables in equations (3.1) and (3.2) should be
self-explaining from Fig. 3.1, except for w and v = [v1 vle. These
are the measurement and the process-poise, respectively.

Since the tracker is going to be realized on a digital computer, the
discrete version of the equations (3.1) and (3.2) are sought. We get

(1/T - sample frequency) [3]:

X, = O@x +06My (3.3)

]

z, g(§k) + Wy (3.4)

Here, ¢(T), O(T) and g(gk) are defined by:

SRR 0 o p %A saw
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ble) = (3-3)

72/2 0
v 72/2
8(T) T 0 (3.6)
| © T ]
YR (3.7)
Further, Yy and W, are assumed to be while Gaussian processes with the

following characteristics:

E{lv,} =0 \
E{wk} =0
T.
=V .
E{vi v.} x %3 N
{3.7)
.2
E{wk} =W
1 ke=j
g,. = (3.8)
K lo ke

The noise processes Yy and wk are assumed uncorrelated. The process

noise covariance matrix, Vk, has the following form:
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th‘l‘k,k_l k k

(3.9)

(3.19)

where gk -1 is the a priori estimate of the state vector at time k.
k-

The Extended Kalman filter equations for the system described by

equations (3.3) to (3.10) are the following:

Initialization:
X = x°
=0,-1 =0
_aC
Po,-1 = Po

Observation integration:

Pl

Bk - k-1 TR T E k)
L k-1 = I x-1)
=P T | p B +w )t
K = Ppopee1® BPr k-1 ¥k
P_. = (I-K H )P (g 1)" + KWK
X,k KHEIPY g KA + KWK
Time updating:
X1,k = 0Mx

_ T T
Pra1,k = $(DP 0D + 8(TV,B(T)

(3.11)

(3.12)

(3.13)

(3.14)

{3.15)

(3.16)

(3.17)

(3.18)
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3.2 Extended Xalman filter, Polar Coordinate System.

A discrete Polar coordinate system representation of the non-
maneuvering target can be derived mathematically, however, the easiest
way is to use a geometrical aporoach. Fig. 3.2 shows the relative
geometrical situation, as seen from the observer (the coordinate

system is fixed to the observer):

YA .

Fig. 3.2. Relative Geomettical Situation.

By refering to Fig. 3.2, the following two equations can be estab-

lished directly:

/ AL"
= =if__Nk
s = q;k + tan Rk+AL )+ Vik (3.19)

‘ 7 3
Res1 =\/u\c+Aka’ * My + Vo (3.20
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where v1k and v2k are additional white Gaussian noise processes.
The variables Aka and ALNk are the relative displacement between
cbserver and target over the sample period [kT, (k+1)T], along and

across the line of sight to target, ¢k. These variables can be given

by:

My SMEEN

=s, - - (3.21)

AL x B By e

where the transformation matrix, sk is given by:
[}
cos ¢ -sin ¢

s, = k k (3.22)

k
;5 sin ¢k cos ¢k
T '.r : .
i3 and [AkaAka] and [Ax_, Aysk] are the target's and the observer's

e - absolute displacement in x,y - direction during the sample period
kT, (k+1)T]}.
Since the assumption is made that the target is not maneuvering, we

have:

Ay Vxk

= T , (3.23)
By Yok
vxk = target absolute velocity in x-direction at time kT

= target absolute velocity in Y-direction at time kT

<
|

vk

W AR B
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The observer's displacement during the sample period [kT, (k+1)T1,

[AxskAysk]T, is given by the ocbserver's dead reckoning system. Assuming

that the observer's acceleration is constant over the sample period, we

can write:
,Axsk vsxk 1 2 asxk
= +T + 3 T (3.29)
Aysk v ox syk
wherxe
Veirk = observer's velocity in the x~-direction at time kT

vryk = observer's wvelocity in the y-direction at time kT
asyk = pobserver's acceleration in the x-direction at time kT
asyk = gbgerver's acceleration in the y-direction at time kT

Now, selecting the Cartesian velocity components v <k and vyk as
representation for the target velocity, the total, nonlinear Polar
coordinate system representation of the target-observer relationship,
is given by:

- -
o | [or e8| |
pk

1k
2 2
L - et | Viredn 0f - ang o 72 (3.25)
vx k+1 vxk V3k

Uy k1] | Vv ] UVak
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Defining:
] Aloy \
¢k + tan"t -_:ZET—\
Ry pk/
V/““’__"—'i____——i—
(Rk+ ka) + ALN‘k
£(x) = (3.26)
Vxk
v
k
L. ¥ -
and
= [v,, v, V.,V ]T (3.27)
T = YixVoxV3k 4k .
equation (3.25) can be written:
£ - 26 vy,
% Further, defining the observation matrix:
E
£ H=1[1 0 0 0] (3.29)

the observation equation for the system described by egquation (3.28)

will be:
z, =H: ﬁ +w (3.30)

Equations (3.28) and (3.30) are our final equations for the Polar
coordinate system version of the target tracking p.roblem. As we can

see, the system dynamics are nonlinear, while the observation equation

is linear.

- -
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In oxder to utilize the Extended Kalman filter on this system, we

have to develop:

F, = e (3.31)
§ aﬁ ’—‘E=A,k

The development of Fk is done in APPENDIX A. The result is:

Rk(Rk + AFpk) Annk T.ALyk _I%ka
2 2 2 2
Rew Res1 Res1 Res1
Rk-ALNk Rk+Aka T .AL <k TALYk
Fk = Rk+1 Rk+1 Rk+1 Rk+1 (3.32)
0 0 1 0
0 0 0 1
where -
Aka = (Rk + ALPk) sin ¢k + ALNk > Ccos ¢k (3.33)
ALYk = (Rk + ALPk) cos ¢k - ALNk sin ¢k (3.34)

or, by inserting for Aka and ALNk from equation (3.21):
Aka = Rk « 8in ¢k + Aka - Axsk (3.35)
ALyk = Rk cos ¢k + Aka - AySk (3.38)

The Extended Kalman filter-equations for the system described by

equations (3.28) and (3.30) are the following:
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Initialization:
55,-1 = 53
Pg,-l = Pg

Observation Integration:
ENEE NN RN
' Hzi,k—l

— T P
%= Pi,k-la (HPy 1

T -1
H + wk)
_ _ _ T T
Pi,k =@ KkH)Pi,k-l(I GH) T+ KWK
Time updating:

g—l-l,k £(g,k)

P> = F PP F: + V2

k+1,k k' k,k k

where the process noise covariance matrix, Vp

kl
- -
v?k 0o 0 o©
0 vgk 0 0
Vi = »
0 0o vy o0
0 0o 0 vﬁk-

is given by

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

In order to get identical initial conditions for the two repre-

seniations given in Section 3.1 and 3.2, the following relationship
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exists between the initial conditions given in equations (3.11), and

(3.37), (3.38):

0 sin ¢0 0] 0
0 cos ¢ 0 0
c 0
xC = < (3.46)
= |o 0 1 o] 9
0 0 o 1]
Further, defining:
P . -]
R cos ¢o sin ¢0 0 0
-R sin ¢o cos ¢O 0 0
T = (3.47)
0 0 1 0
0 0 0 1
we have:
pC = TpPr’ (3.48)
0 0 *

3.3 Second Order Gaussian Filters.

The following development follows the spirit of Jazwinski [2],
pp. 91, 336-346, 362-365, and Gelb [12], pp. 191-192. We are, however,
interested in a system representation where both system dynamics and
observation are discrete, while [2] and [12] are concerned with continuous
system representation, and discrete observations. Therefore, the discrete
version of the second order time updating equations have to be developed.

Jazwinski [2] defines 4 different possible solutions to second ordexr

filtering:
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1. The truncated second order filter.
2. The Gaussian second order filter.
3. The modified truncated second order filter.

4. The modified Gaussian second order filter.

J e

We select approach no. 4, which also has been developed by Wishner

et al. [13]. For this approach the following assumptions are made

about p(xk);

1. p(xk) is symmetric and "close to the mean".
2. The third central moment is zero.

3. Assuming Gaussian density, the fourth central moment is
approximated by:

A -~ ~ ~

4. The fifth and higher order moments are neglected.

(3.49)

In order to proceed the development, a couple of operators have to

be defined, namely 1) 32 (£(x),B) and 2) (3°£ P*3°f):

1) The operator Bi(g(x),B), for any function £(x), any x and
any matrix B is a vector whose ith element is defined by:
T
n | O£,
82.(f,B) é trace {=e [——5} * B
xi =

ox |9x

(3.50)

2) The operator [Bifjg)Pzaif(E)], for any function f(x), any x and

any symmetric matrix P, is a symmetric matrix with elements (i,J)
n 8°s, 5%,
i

E 3% 9x, " p kq 3% 9%
x,pa k" " %q

[2):

(3.51)
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Wishner et al [13] gives another definition of this operator, which

turn out to give identical result. The [i,j]th element is in [13] given

by:
HRE 'r 2 13 T
trace l 5% [5-5— (gi(_:g))] - P 3% [_3—5 (fj (_:5))] . P% (3.52)
In the following, we will use the definition in eqg. (3.52) for this
operator.

With the definition of these two operators in mind, we are ready to
develop the modlified Gaussian second order filter.
The system and observation equations are assumed to have the following

form:

X4 = L) + v (3.53)
z, = g(_zgk)-’- Ve (3.54)

If f and g are sufficiently smooth, the second order terms can be

included in the Taylor expansions for f and g. Linearizing f about

X = g:,k and g about x, = ik,k-l' ve get:

of
I = L& O M)
x =% . (3.55)
+19 (£, (x & ) (x-& )7
2 °x = k! BTk
= %k
. 9
qlx) = g® )+ 5§ %R )
X=X k1 (3.56)
1 A2 ~ T
+3 3i (9 (XX 1) R (1))
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We recall the definiticns of equations (3.10) and (3.31). Now, taking

the expectations of equations (3.55) and (3.56), making use of the

assumptions that:
Blx, ~ X ) =0
(3.57)
ElxR it =2

we get:

R,k = Bl

1]
|+
-

1
) + 3 agk k‘i"Pk,k) (3.58)

A

B ko1 = Elg(x )} = IR pq) Y 8&{ k_l(g,xs»k'k__l) (3.59)

Equation (3.58) is the second order approximation difference equation

for X between observations. We now seek a recursive equation for the
covariance matrix Pk between observations. Using (3.53), (3.55), (3.31)

and (3.58) we get:

_ " e T
Prat,k = Bl R ) G R i) )

1.2 AT 1,2

=B{[F -0  +5 05 (£, 0% - Ax ) -303; (£ ) + v 1[1}
X Fx,k T2 N Kk S Pk

= T+v + (3.60)

= FPr ke Ly

where Lk is given by:

Lk=%~E{32 (£, DR ARY )92 (£, Ak AT )TY

R oL K2k B X k"B, k
(3.61)
1,2 2 T
-2 agk k(flpk’k)aﬁk k(f"k,k) /

|
1
|
|
i

NANDRRDIAR Y vt Bt 110 L0
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By use of the approximation given in equation (3.49), Lk can be reduced

to [2]:
'k ’ r 'k 14

Equations (3.60) and (3.62) are the sought recursion for Pk between
observations.
The equations for the modified Gaussian second order filter at an

obsgervation is given in [2]:

Bk = Bk T R k-1 (3.63)
P, . = (I-K.H )P (I-KE)T + KWK (3.64)
K,k KB Py k-1 (TR KK .
=p Tiup Taw, +A ]t (3.85)
Ke = Prok-1 Py -1 W A .
=1m a@, . P> . 32 & . .)) (3.66)
BT 2%% TP’y | Ik :

The necessary equations for the modified Gaussian seccnd order filter
are now established, and constitutes of equations (3.58), (3.60) and
(3.62) for time updating, and (3.63), (3.59), (3.64) - (3.66) for ob-
servation .ntegration.

The eguations will now be specialized to the two different representa-

tions of the target tracking problem.

3.3.1 Cartesian Coordinate System Model

The Cartesian system mcdel representation of the target motion with

bearing only measurements is given by equations (3.3) to (3.7). Since
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the system dynamics are linear, the second order filter equations for time
updating, equations (3.58), (3.60) and (3.62) reduces to the normal Kalman
filter equations, given by equations (3.17) and (3.18). The observation
equation (3.4), however, is nonlinear, and equations (3.59) and (3.66)
have to be evaluated for the nonlinear function g(xk) given by equation
(3.7).

From equations (3.59) and (3.7) we get:

~

- k, k-1 sk.
z = ]"Tl____ .67
zk,k 1 tan )+ b] (3.67)

Yy, k-1"Vsk

where b, is given by (see equations (3.59) and (3.50)):

k
(3.68)
-1, T
1.2 -1 1 (8 | 3 tan "(-) l
bk =3 ng . 1(tan («), Pk,k—l) =3 tracelax [ o . Pk,k-l}
2.5 = - - X =
X5 k-1
Defining (see Fig. 3.1):
b =% x-1 ™ %k
Ay Y k-1 " Yex ’ (3.69)
R =VAx2 + Ay2 )
[ 0 tan_l(éﬁ) T .
9 Ay
we can calculate — . -
ox|  3x

o At

s ok i

AN 100,
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The result:
- 7]
20x- Ay Ax2-py?
T 7 0 °
R R
2 2
[ -1(é§5lT Ax ;Ay 2Ax;Ay 0 0
O |3 tan "\Ay/| _ R R
31‘.[ 3§ J = (3.70)
0 0 0] 0
0 0 0 0
. -

Based on equation (3.70), equation (3.68) becomes

i 2,2 2,2 T
-2AxAy - P+ (Ax” -Ay )le, -2AxAyP12 + (Ax"-Ay )P22 0O o0
(AP-Ay?)P. . + 2AxAy-P.., (Ax>-Dy?)E.. + 2AxAyP o o
b, = —— trace Y %41 Y a1 Y 1¥12 22
kK ,R
0 0 0o o
| 0 0 0 0
(3.71)
Finally:
b, = —% [2AxAy(P P} + (ax*-0y7) (B, + P__) (3.72)
kT g8 227711 21 7 P12 .

Next we have to evaluate equation (3.66) based on equations (3.52) and

(3.7). The result is

2, 2,2 2 2 P 2) _ 2AxAy(Ax2—Ay2)(P

" -p 2. -
A T30 [20% Ay~ (Py 1 +P)5=P15"Pp1 117F22) (P15%%,q)
2 2.2 (3.73)
+ (Ax"~AyT) (Pllez + P12-P21)]
In equation (3.71) - (3.73) the variables Pll' P12’ P21, and P22 are
the position elements of the covariance matrix P  i.e.,

k,k-1
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Piai P12 Py Py
Pa1 Paa Pag Py
- 3.
Px k-1 (3.74)
Ps1 P P33 Py
Par Paz Pa3 Py
= -l

The modified Gaussian second crder filter for the Cartesian system

model representation of the target motion can then be summarized as follows:

Initialization: Equations (3.11) and (3.12).

Observation Integration: Equations (3.13), (3.67), (3.72), (3.65), (3.73)

and (3.16).

Time updating: Equations (3.17) and (3.18).

3.3.2 Polar Coordinate System Model

The polar coordinate system representation of our cracking problem is
given by equations (3.28) and (3.30). 1In this case the system dynamics
are nonlinear, while the observation equation is linear.

The second order filter equations for time updating, equations (3.58),
(3.60) and (3.62) have then to be special:ized to our polar coordinate system
model, while the observation equations, equations (3.63)-(3.66), (3.59),

reduces to the normal Extended Kalman-filter equations, given by equations

(3.39)-(3.42).

From equation (3.58) we get:

oP = £(oF 3 (3.75%)
ek S E &K W Y3 G

TP

AR st
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where the vector C, has elements i given by:

-..*
3 |25 T
Cki = trace 33:_ —5:—".‘. ‘ ‘,\ppk'k {3.76)
¥ ok

Further, we have to calculate the matrix Lk given by eguation (3.62).

The calculation of C, and Lk are performed in APPENDIX B. The results

=k
are:
... ] I f1,.p,,
. P,
1% §,i=1 i ij
“2x I e,
= |51 ji ij (3.77)
c -
3k 0
| Cax | [ o -
-, 4 .
5..5 z 15 0 0
jea=1 g 4e I Y
4 4
- L t..s.. % t.. o 0
: 1| 3.i=1 Ay
0 0 o o
[ o 0 0 o]

The elements of the matrices Fl, F2, S and T are given in APPENDIX B.
The modified Gaussian second order filter for the Polar Coordinate

system model of the tracking problem can then be summarized as follows:




T &

Initialization: Equations (3.37) and (3.38)

Observation integration: Equations (3.39)~(3.42).

Time updating: Equations (3.75), (3.77), (3.60) and {(3.78).

3.4 Iterated Extended Kalman Filter {[2]

The following 5 approaches to solve the target tracking problem are
all approaches involving some sort of iteration schema., The first approach,
called the iterated extended Kalman-~filter, is a local iteration scheme,
and is designed in order to reduce the effect of measurement function
nonlinearity. This approach can therefore be tried on the Cartesian
coordinate system representation, which have linear system dynamics and
nonlinear measurement model.

Since this approach is very well documented in Jazwinski [2], pp. 278-
279, it should be unnecessary to repeat the equations in this text. For

cuapleteness, however, the approach is includec” in APPENDIX C.

3.5 Iterated Linear Filter-Smoother [2]

If we have system dynamics nonlinearities, the preceding iterator will
not improve the estimate gk+1,k due to system nonlinearities acting on the
interval [kT, (k+1)T].

The preceding iterator can therefore not be used in connection with

the polar coordinate system representation of the target motion.

[ somimamannmnenn o



sy

g et b
st Al

-28~

The "Iterated Linear Filter Smoother", proposed by Jazwinski [2],
PP. 279-281, include the time updating process in the iteration loop.
This approach can therefore be tried on the polar coordinate system repre-
sentation of our tracking problem.

Again, siice the approach is well documented in [2], the iterator

equations are exiled to APPENDIX D.

3.6 Global Iterated Filters

As we mentioned in Section 2, one of the main problems with bearing
only tracking is the poor degree of observability. The observability of
range is entirely dependent on the maneuvering scheme of the observer.

in order to improve the observability, and at the same time iwprove
the referxence trajectory and thereby get a more optimal utilization of
each observation, a number of global iteration schemes are proposed.

The iterations will here not be performed at the time kT (as in section
3.4) or over the time interval [kT, (k+1)T] (as in section 3.5), but over
the greater time interval [ (k-N)T, kT], where N is some integer constant,
may be variable.

This iterator requires, however, a lot of memory capacity for storing
of variables. The following sequences has to be stored (M is an integer

constant > N):

Observation Sequence:

R N L SWPTIILY, (3.79)




“20-

Observer position, velocity and acceleration:

X, = {x ' X seeesX .} (3.80)
sk “Sym Sk-mi =sk
Vsk = {!S » Vv g ece f!sk}

Kk-M  Sk-M+1

A

]

{a, .2 veeera ) (3.82)
O TSkm Sk sk

covariance matrix:

P, =1{

e = P ke ,Pk’k} (3.83)

As we can see, the memory capacity requirements will depend on the
size of the integer M. Also, if the iteration time interval is fixed

= i i ] i < <
(N = constant) or the variation space for N is fixed (Nlow <N —-NHIGH’

where NIOW and NHIGH are constants), the requirements for storing of the

covariance matrix can be restricted to

p, = {p , P

k k k-N +1,...,

Nuren HIGh } (3.84)

P
kN, ow

The requirements concerning storing cf the observer's wvelocity aud ac-
celeration will also depend on the representation of the tracking problem.
Equations (3.79)-(3.83) therefore represent an upper bound on the memory
capacity requirements.

Intuitively, if the observer has perZormed a maneuvre during the
time interval [(k-N)T, kT}, a global! iteration scheme will improve the
observability. The idea is that we then get crossbearings over tliis
time interval.

Three different approaches to the Global Iterated Filter will be

outlined in the following.

RN S IMTI s B =N AR 3t
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3.6.1 Cartesian Coordinate System Representation

The first approach to be Global Iterated Filter utilize the Cartesian
Coord‘nate system representation described in Section 3.1.

The number of iterations, i, on each set of data, has to be limited.
The following test is proposed in order to stop the iteration sequence

at a time instant kT:

£l ce a.o0

where the € vector has to be selected through simulations as a compromise
between accuracy and computertime (number of iterations).

If a target maneuvre is detected, the size of the iteration interval
should be decreased in order to not perform iterations on premaneuvie
target data. The iterator should therefore have an adaptive calculation
sequence for N, in connection with the maneuvre detection system. We
will return to this point when dealing with the maneuvre detection system
in Chapter 5.

The iterator will work in the folilowing way:

Having performed iterations on the cbservation sequence {zk-ZN'
zk—2N+1""'zk~N}’ until the criterium lgi—N,k—N*xi:;,k—Nl <€E is
satisfied, we have the state vector gk_N'k_N and the covariance matrix
Py k-y These are stored in the computer memory. Perform the global
iteration algorithm subsequently on the observation sequences {zk_2&+1,...,
zk-N+1}' {zk-2N+2""' zk-N+2} etc. At each fulfilled iteration, say

at samplepoint jT, the covariance matrix P, . and the state vector
(4

ij i are stored. Like in the conventional Kalman-filter case, however,
r

only the value of the state vector at the last samplepoint is needed, so
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the next state vector . can use the same storage are as ¥,

X, . and
=53 X.1,5-1 ¢

thus destroy X. . .
¥ _3'11]‘1)

Eventually, wien we arrive at sample kT, we have the following data

base victure (older data have been discarded):
Observation sequence: {zk—N""'zk}'

Covariance sequence: {P yeees P

}
k-N,k-N k-1,k-1"

Observer position sequence: {gsk_N,...,gsk}

State vector: Sk 1.k-1
-1,k-

From this startpoint the following calculations are performed:

1. Time updating. Calculate 3k keg 4B -
’ [

2. Observation integration. Process 2y ¢ resulting in 3; k
i . !
and Pk,k' where i=1l.

3. Timebackdating:

i AL
XKe-n,k-n = OOV X (3.86)
Pk-N,k-N = fetched from the data base

4. Reprocess the observation sequence, resulting in
i+l Pi+1
Bk P
5. Perform the test described by equation (3.85) to decide
whether to continue the iteration loop, or to stop the

iterations on this observation sequence.

1o o n

AWl BALA SR 0 o
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1f decision is continue the iterations, set i=i+l,
and start from step 3 again.

If decision is to stop the iterations, store i+l

k

] ’

and P;+; in the computer memory, set k = k+1, and
14

start from step 1 again.

This iterator will successively improve the linearization trajectory

. for Hk {given by ecuation (3.10)). The utilization of the data sequence

therefore will be increasingly more optimal.

3.6.2 Polar Coordinate System Representation

The second approach to the Global Iterated Filter utilize the Polar

Coordinate system representationdescribed in section 3.2.

The mechanization of the iterator is identical to the iterator in

sequence 3.6.1, except for the time-back dating step.

cutaia it

Due to the nonlinearity of the system dynamics, where the target

position information is given in relative coordinates (relative to the

T
A e g

observer), timeback dating by use of the inverse form of equation (3.25)

(with the process noise vector v = 0) , would be unnecessary time-

33

consuming. gi i would then have to be calculated for decreasing i, i=k,
1

o
ALd

k~1,...,k=N, not in one big backdating step as we could do for the Cartesian

Coordinate system model (see equation (3.86)).

In order to save computertime, the following approach for time-back-
dating is proposed:

1. The state vector's position information is transformed to

Cartesian representation through:




<
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N

XK= Rk k-sin ¢k,k + X (3.87)
I r
Yk,k = Rk,k cos ¢k,k + Yo (3.88)

where the different variables are defined (without time

subscript k, though) on Fig. 3.1. Since the velocity

representation is equal in the two representations, we

now have a complete, Cartesian state vector 2; k"
[

2. Perform time backdating through equation (3.86), resulting
. aC
N B N,k-N.

3.

Perform the transformation from Cartesian to Polar repre-~
sentation through the equations

xk—N k=N - xs
¢ = tan | % kN (3.89)
KN kN TN, k-N Y
! k-N
R xn =Y B kn s )2+ A )2 (3.90)
' ' k-N ' k=N

Now, if the time back dating step of the iterator described in
section 3.6.1 (step no. 3) were changed to include processing of equations
13.87) and (3.88) before processing of equations (3.86), and to include
processing of equations (3.89) and (3.90) subsequent to equation (3.86),
thie calculation steps 1-5 given in section 3.6.1 will be valid also for

the Polar coordinate system case.

One additional preferable requirement exists, however: The data~

base should also contain the observer's incremental position change from
sample to sample, given by the left hand side of equation (3.24), over

the time interval [(k-N)T, kTi.
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Alternatively, these quantities can be calculated from the sequences
given in equations (3.81) and (3.82), if these are in the database.

This iterator will successively improve the linearization trajectory
for Fk (given by equations (3.31)~(3.32)). The computational require-~

ments will, however, exceed the iterator in Section 3.6.1.

3.6.3 "Serial" filters

If the two previous described global iterators process each observa-~
tion sequence‘{zk_N, zk-N+1""'zk} twice, which is the minimum number
of iterations, each individual observation Zy will be processed 2N
times. It is thus obvious that these iterators will increase the
computational burden very heavily, as compared to the Extended Kalman-
filter case.

In an attempt to reduce the calculation load, and still bring along
the advantages of the global jiteration approach, a different iterator

voposed for the Cartesian system representation. The effect of this

in fact two coupled filters, running along the target
« .. ~0ry with a certain time delay, NT, between the filters. This is
the reason for the name serial in the heading of this section.

The two serial filters are added together in one gsystem description,

in order to get a compact form. We have:

(x,, |lo o 0 o 11 0o Ty O X
Va1 0 o 0 0 R | 0 TEHL| |y
Ve kil 0 o 0 0 0 0 1 0 Ve
vy'k+1 L]0 0 0 0 0 0 0 1 . v&k +
xk—N+1 0 -(N-1)T 0 0 xk-N
Yy Nt 0o 1 0 -(N-1)T O 0 0 0 Yy
vx K=N+1 0O o 1 0 0 0 o 0 vﬁk—N
v . - 14 [a) n had ! '
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/2 0 0 0
o T2/21 o0 0 o
T 0 0 0 1k
0 P 0 0 Yok
T 2 . (3.91)
0 T2/2
0 / 0 vlk—N
0 0 72/2 Y
0 0 0 . Zk—N.l
K ) 0 T
;i tan—l(‘kaxSk W,
_ TkYsk . k (3.92)
“k-N / X %s Yk-N
L -1 k-N
tan Y -
- \ k-N Sk-N /..

In equations (3.91) and (3.%2), N is the number of samples between the
two parts of the state vector.

We now define:

A
Xkl *x
% = = (3.93)
Xk %N
and
Yix A/N
vk = = (3.94)
Yok Iy-N

Then, equation (3.91) can be written:

o

LN R

$(-(N-1)T)1 O Y

¢ ( (N+1)T) 0 (T)

ama et s i e e e

e I -
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Further defining:

. z, = = 3.96
% Ek = = ) (3.96)
; 2ok J %N
§ -1 (Axk >
= tan 3
¥x
g% ) = (3.97)
** tan~l (A"k,N
an  \a
Yi-N
and
- W
W = k (3.98)
“i-N
the observation equation (3.92) can be written:
z, = glx) +w, (3.99)
Lastly, we define
]
- élz'-(k) —é-x,_;(k) 0 o} 0 0 0 o]
7 = 32_' R R |
“~ = 1 _
axl, - [ 0 o o0 o] é32f—(1c--n) —Axg(k-u) 0 oJ
(3.100)
- -
o ©
V =
X v (3.101)
0 k-N
L )
. A
Wk )
W, = (3.102)
W
N KN

e ——— s o
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I
- 0 | ¢((N+1)T;|
o(T) = i (3.103)
¢(°(N—1)T)i 0 J
and
8 (T) i 0
o(T) = -—--—i—-—-—- (3.104)
o | 6(m

where Vk and Wk are given by equations (3.8) and (3.9), 6(T) by equation

(3.6) and ¢(T) by equation (3.5). ﬁk can also be written:

# = f—t— (3.105)

where Hk is given by equation (3.10).

The Extended Kalman filter equations for this augmented (t) systen,
are given by equations (3.11)-(3.18), if replacement with the augmented
variables are performed in the equations.

In order to start up the augmented system correctly, the first N

observations aic processed with the Kalman-filter given in section 3.1.

Then the initial values for the augmented system will be:

. &

1 7 (3.106)
-0

) Pex O

By 1 = (3.107)
0 P
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At this point it is appropriate with a few comments on this
approach to global iteration. As we can see from equation (3.95), the
first part of the state vector, Eik' is updated on the basis of the
second part of the state vector, §2k' and vice versa. From equation (3.92)
we can further deduce that each observation will be integrated twice.
Looking at the iteration scheme given in section 3.6.1, we
can see that our 'serial” filter is equivalent with the steps 1-4,
with step 4 reduced to integration of 2y N followed by a time updating
step up to time (k+1)T. Step 5 does not exist, each observation is only

reprocessed once.

The global iteration effect of this approach should then have been
demonstrated.

It should be pointed out that this scheme can be augmented to
incorporate a selected number of filters, say M, following each other

with a time difference NT. The resulting model would then look like:

_ —1 - 1 r "" r 7
EN o\\¢((n+\1)\ir) 0 x| @ o 5
9 ~. N . \ .
52 H \ \ \ . \ . . (k)
. ' N \ .
. (k+1) | = |! \.\ AN k) \ .
. : N 3 () || \ .
. \ .
Xy $-N-1)T0-- - o | x| LO el Ly, _
(3.108)
with an observation equation:
g ean™L (A g
200 T tan (& ®) wei) ]
R <l + . (3.109)
- " -1 (Ax :
 z(-my)| {tan (K§ (-t}  w (k-
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In this case, each observation will be processed M times.

3.7 Parallel Filter Approach

The last approach that will be explored is the parallel filter
approach. In this case, wheres we have M parallel filters with different
linearization trajectories, only the simplest Cartesian model for each
filter will be considered, in order to reduce the computer time. Each
filter will, therefore, be represented by the mathematical model given by
equations (3.3)-(3.7).

The philosophy behind this approach is the following: Each filter
will be initialized with different range, Roi' i=1,2,...,M. The initial
values for the wvelocity components for each filter will depend on RO'
if the initialization routine proposed in Chapter 4 is used.

In the time interval from initialization until the first observer
maneuvre, target range is unobservable. The utilization of the bearing
observations in this time interval will be nonoptimal for all the filters
except the one(s) with approximately correct range. When the observer
performs a maneuvre, target range kecomes observable. It is then possible
to identify which of the ™ filters that has the most correct range.

The resulting state vector for this filtering scheme can be given

by [14]:
”~N M ~
x = z P(Rki = fS(/zk) g {(3.110)
i=1

where the probabilities P(Rki = Rk/zk), i=1,...,M, have to be calculated.

The question is how.

i



e :1 b‘;n; it

PLa

Now, the most likely quantity to contain information about these
probabilities, are the innovation sequences for each filter. These are
given by:

Eki = zk-ﬁk x-1.' i=1,2,...,M (3.111)

14
i

In our special case, € ., is a scalar variable. Under a number of conditions,

ki
which include the rey.irement of equality between the physical system and the

mathematical model contained in the Kalman-filter, the innovation sequence

has been shown to be a white Gaussian sequence with statestics ~N(O, Gii),
2 .
where Uki is given by:
2 i i iT
ki = e, k-17k, k-1, k-1t Mk (3.112)

Oi., i=1,2,...,M, are already calculated by the Kalman filtexr algorithm.

i
mki = 0, and oii' i=1,2,...,M, represents the expected mean and variance
for the innovation sequence.

The expected variance of the innovation sequence given by equation

(3.112) will be different for each filter, i.e., the variance will depend

on Ri' Equation (3.112) can be written:

2 1 i

i 2.1 i i 2.4 i
o, . = [P + cos ¢ + P -sin ¢ . -P -sin2¢, . 14w
ki Ri 11k,k-i k,k-1 zzk,k-l k,k-1 12k,k—1 k,k=-1" 'k
or equivalently (3.113)
2 1 i i 2
g. =[P + P -0, 1 +w (3.114)
S S RS RS W T

where
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2 i Z,1 i 2,1 i i
o, =P sin"¢ + P s cos' ¢ + P +sin2¢

1 - - -
R 1n ko=t T T2z 0O kel T Taz k., k-1

(3.115)

The difference between the M different ¢i's will not be significant
in this case, since the observability of the bearing, ¢, is very high,

The values of the covariance matrix elements; Pll' P22 and P12' however,

will depend on Ri' In the equations for calculation of Pk X the observation
’
roise will be weighted by Ri. See Appendix E for detailed derivation of

the covariance equations.

As can be seen from Appendix E, each of the elements of the covariance
matrix Pk,k will increase for increasing Ri' The value of the expected
innovation variance given by equation (3.113) will, therefore, not decrease
as a function of Rzz, however, Oii will decrease as some function of Ri,
since the elements of Pk,k are limited in their growth, and does not in-
crease with the power of Ri anyway. A detailed simulation analysis of the
equations given in Appendix E has to be carried out, in order to reveal

the exact behaviour of as a function of Ri'

Pk

The actual statistics for each filter i, i=1,2,...,M, can be approximated

by:
R €. (3.116)
i 55ty ji
3
2 1 _ 2
cxskia-——N+1 Z (€55 Mg ) (3.117)

j=k-N 3

The idea is now to compare the innovation sequence's actual statistics

with its expected statistics, and thereby get an expression for the

T R B b0 i
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Probabilities P(Rki = Rk/zk).

In doing this, we have to consider the following two cases:

1. System not observable in the time interval [ {k-N)T, kT].

2. System is observa*ion in the time interval [ (k-N)T, kT].

By observable or not we mean whether or not the range/velocity
ambiguity can be r.solved through the bearing observation over the time
interval [(k-N)T, kT]. In any case, the bearing to target will be
observable, and so will the ratio Av/R, where Av is the relative velocity
between target and observer.

The information as to whether the system is obé@rvable or net, and
the degree of Lhe observability, is known to the tracking routine,
since the observer's maneuvering history in the time interval [(k-N)T, kT]

is known.

3.7.1 System not observable.

If the observer's velocity- and/or course-changes are below defined
thresholds over the time interval in question, we know that the range/
velocity ambiguity can not be resolved from bearing observations only.

This case can further be devided into the following two sub~cases:
1. The target is not maneuvering during the time interval.
2. The target is maneuvering during the time interval.

A maneuver is defined as a definite course and/or velocity change,
not the natural small fluctuations in velocity and course due to waves,

wind, etc.

e e —————_
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3.7.1.1 Target not Maneuvering

If the target is moving along a straight course with constant speed,
the actual mean value of the innovation signal given by equation (3.3116)
will be close to zero (below a defined threshold, say mLt)'

Since we know that the target's natural fluctuations about some
mean course and speed doesn't depend on the distance from whexre it ie
observed, it is likely that the bearing statistics should contain some
range information.

In fact, this case looks like the stationary process case where
adaptive noise estimation is possible. See Mehra [15], {[16], and Chin
[171, {is].

In this case we propose to use the covariance matching method,
however, not to do any adaption (even if that shouvld also be nossible),
but to arrive at an expression for the probability function p(ﬁi = R/zk).

If we set the equations (3.114) and (3.117) equal (expected variance
actual variance), we get:
(R,) + pt

22

5 (Ri) - OR ) +W =g (3.118)
k, k-1 k,k-1 i

1.
3

Solving this equation for the only explictly occurring Ri in the equation

gives us:
P (R,) + P (R,) -0~
k1 * 22 x-1 i
R¥ = L 3 £ (3.119)
* O ¥k
ks

=

e — e e —
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ARi = R; - Ri, i=1,2,...,M (3.120)

will be an expression for the range error for each filter.
We propose the following form for the probability function

p(Ri=R/zk):
p(Ri = R/z]_) =K - e (3.121)

where the variables K and o will depend on the process noise covariance

matrix V., , and have to be decided upon through simulations.

kl

3.7.1.2 Target Maneuvering

During a target maneuvre, the method described in section 3.7.1.1 will
not work, since we in this case gets temporary changes of unknown size
and duration in the process noise covariance matrix Vk

taken into account in the calculation of the expected variance of the

, that are not

innovation signal.

Therefore, when a target maneuvre is detected, for example by an
abrupt change in both the actual mean and variance of the innovation
signal, the last calculated probabilities p(Ri = R/zk) should be used,
until the filters have adapted to the new course and/or speed, and
mek. again drops below the threshold mLt'

* Alternatively, if it is possible to decidec upon the time delay
between the instant of the target maneuvre and its detection, the

probabilities p(Ri = R/2 ) should be used, where At is the described

xT-At
time delay.

Target maneuvre detection will be treated in Chapter 5.
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3.7.2 System Observable

If the observer is maneuvering during the time interval [ (k-N)T, kT],
the range/velocity ambiguity can be resolved based on the bearing
observations only. 1In this case the filter with the most correct range
can be identified, if the target is not maneuvering ducing the time
interval in question.

We therefore have to consider the same two sub-cases as in section

3.7.1:

1. The target is not maneuvering during the time interval.

~

2. The target is maneuvering during the time interval.

3.7.2.1 Target not maneuvering

The filter with correct range will not change its actual statistics
when the observer performs a maneuvre., This fact can be utilized to
prune off the filters with wrong range.
By monitoring m€k and 02 . given by equations (3.116) and (3.117) through an
observar maneuvre, it is thus possible to identify the filter with the
best range as the filter with the least change in actual statistics.
In this case, we continue to calculate the probability functions

given by equation (3.121) for a gradually decreasing number of parallel

filters, as the filters with the wrongest ranges successively will be

removed from being in an active state to a so-called "dormant" state,
where they no longer are updated.
The selection of the filters with bad ranges can be made from monitoring

m . When m_ exceeds a given threshold m
€xi ki HE

» the filter no. i is temporarily
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pruned off the ensemble.

In this way the number of necessary parallel filters can be reduced,
and if the observer maneuvre extends over a time interval long enough, or
if the observer performs successive maneuves while the target remains on
straight course with constant speed, we will eventually be lef* with one
filter, with correct range.

This situat. 1 will prevail only until a target maneuvre is detected,

when all the M parallel filters should be initialized again.

3.7.2.2 Target maneuvering

When a target maneuvre is detected, all the M filters should be re-
initialized, independent of the number of active filters at the time of
maneuvre detection.

The M filters should be reinitialized with different ranges Rbi
centered about the estimated range ﬁk,k' given by the state vector

gk'k at the time of maneuvre detection. The difference between the
individual ROi's should be much less than during the first initializa~
tion, since range is not at all so uncertain this time.

Simultaneously, the velocity elements of the covariance matrix should
be increased, in order to allow the filter to adapt to the targets new
course and speed.

After reinitialization, the calculation of the probability function
given by equation (3.121) is resumed.

Target maneuvre detection and handling in connection with parallel

filters are treated in section 5.3.
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3.7.3 Closing remarks, parallel filters,

The parallel filter approach seems very promising, however, the calcu-
lation load imposed by this approach will be substantial.

In order to arrive at a practical parallel filter solution, the
idea of adaptively reducing the number of parallel filters have to be
investigated thoroughly. This can only be done through a simulation
study.

Further, this approach claim for a substantial simulation study in
order to "tune" in the different thresholds, time intervals and variables
defined in the previous sections.

One fundamental difference between the parallel filter approach and
the single filter approac., is the range covariance. For the parallel
filter approach the range covariance should be kept low, in order to
make each filter "stiff" in range. This is not normally the case for the
single filter, where range covariance has to be high in order to allow the
filter to adopt the correct range during the periods when range is ob-

servable.
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4. INITIALIZATION ROUTINE

4.1 General

Bearing ounly tracking from a single, moving observer is, in the
initialization phase, very dependent on the selected initial values of
range, course and speed of the target.

The initial values of the elements of the covariance matrix for
the estimation error have also an important influence on the initial
track.

One method commonly used for selecting initial data for bearing
only trackers, is to uatilize the knowledge of range reach of the bearing
sensor. The argument is the following: If a target is detected at some
time Tpe that could not be "seen" ry the sensor at times < Toe the
reason is that the target has just entered the reach area of the sensor,
and is opposing the observer. The initial range is therefore given by
the sensor specifications, and the initial course is towards the observer
{Initial velocity still has to be picked out of the air).

Since the range reach of the sensor usually depends on the environ-
mental conditions, this method frequently will give very bad initial data.

The purpose of this chapter is to derive an alternative method, where
initial data can be selected in a more optimal manner, based on calcu-
lations performed on a given set of bearing observations from the moving
observer, and the position history of the observer.

The following derivation will also give us some valuable insight
in the observability problem, and show the conditions undexr which the
range/velocity ambiguity can be resolved based on bearing observations

only.
o -48-
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4.2 Geometric Problem Visualization

A typical geometric situation is depicted in Fig. 4.1.

Fig. 4.1 Geometrical Situation

A moving observer, 0, observes a number of bearings to the target,
T, at the time points to, tl' t2,..., where the time difference between
any two consecutive bearings may be different.

The following assumptions are made:

1. The target is moving with constant course and speed.

2. The observer's velocity and course are constant between
the observations. (This restriction will be removed

later).

3. The bearings are noise free.

Assumption number 3 is obviougly not true in reality. However, by

use of this assumption it is possible to arrive at certain results.
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In the discussion of these results later in this chapter, methods for

reducing the effect of this assumption being violated will be suggested.

4.3 Calculation of target velocity components.

Based on taree consecutive bearings ¢o, ¢1, ¢2, and an assumed
start range, Ro, the target velocity components can be calculated. We
have the follow. three equations (see also equation (3.25)):

ALN(Atl)
> = tan(¢,-¢.) (4.1)
RO+ALP (Atl) 170

R, = (R°+ALP(At1))2 + i (2t ) (4.2)

ALN(Atz)

R, + 0L (€, = tan(g,=¢) (4.3)
where

A, =t -tg (4.4)

At2 =t,-t, (4.5)

or generally

B, = t,-t; ,, i=1,2 (4.6)

and

ALN(Ati) = cos ¢i_1[vati-AxS. ] - sin ¢i_1{vyAti - Ay 1 4.7

i-1 5i-1
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My (At)) = sin ¢, [v At ~bx_

1-1] + cos ¢i—1[vyAti~Ays, ] (4.8)

i-1

In equations (4.7) and (4.8), assumptions 1 and 2 from section 4.2 are

K e A LT

used. The target movement along x- and y-directions in the time inter-
val Ati are given by vati and vy-Ati respectively (no aczeleration
: term), while the observer movement along the same axis in the time

interval are given by:

1

e, =v_ bt +3a A2 (4.9)
i-1 -1 T -1t
1 2
Ay =v At. += a At (4.10)
si_1 Syi—l i 2 syi_1 i

If the observer position increments in the time interval Ati is calculated
on the basis of equations (4.9) and (4.10), assumption 2 is necessary.
However, by deviding the time interval Ati into smaller intervals,

and calculating Axsi-land Aysi—1 as a summation of position increments
over these intervals, provided that velocity and acceleration data for

the observer in these intervals exists, the assumption of constant
velocity and course can be changed to yield arbitrarily small time

increments.

Now, from equation (4.1) we have:

% ALN(Atl) = tan(¢1—¢0)(R0 + ALP(Atl)) (4.11)

e . Inserting from equation (4.11) into equation (4.2) gives:

- J 2. -
Ry = (Ry + AL (At))) « 1 + tan” (9;-6,) (4.12)

RISy
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Then:
= (R0 + ALP(Atl))/cos(¢1-¢°) (4.13)
Further:
Ro+sin ¢0[vatl—Axsol + cos ¢o[vyAt1--AyS 1
R, = 9 (4.14)
1 cos ($,-4,) :

Inserting for A’N(utl) and ALP(Atl) in equation (4.1), gives, after

some calculation:

R, sin ($,-4.)
1 0 170

= = Ax + tan . (v~ — Ay ) +
At 5q 1ty Atl So Atl cos ¢1

(4.15)

Now, inserting for Ve from equation (4.15) in equation (4.14) gives:

_ RO cos ¢G + (V&Atl-AySO)
R = (4.16)
1 cos ¢1

We also insert for Ve from equation (4.15) in the equations for
ALN(AtZ) ard ALp(AtZ) (equations (4.7) and (4.8), with i=2). The

results are:

At2 (Atz
(At.) =+—R_ * s;n(¢ ¢ ) + cos ¢ Ax -Ax
ALN 2 Atl 0 Sg 51
At
- sin ¢ (Atz by, - by, ) (4.17)
At2 At2
ALP(Atz) At R tan ¢ s1n(¢ ¢ )} + sin ¢ At Ax Axsl)
At At

2 1 2
+ cos ¢1 vy cos ¢ ( AY 0'31n ¢ +AY ocos ¢ ) (4.18)
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From equations (4.17) and (4.18) we find that:

1
ALp(Atz) = ALN(AtZ)-tan ¢, t ESETEI [vyAtz-Aysll (4.19)

Then we have:

R cosd, + (At,)sing. + v_(At_+At_ )-(Ay +Ay )
Ry+l (Bt) - 0 o + ALy (At M A N 50" ¥g1

cos ¢1
(4.20)
Inserting for (R1+ALP(At2)) from equation (4.20) in equation (4.3) gives:
ALN(AtZ)cos¢l
tan(¢2-¢l) = R, cos ¢0 + ALN(At2)51n ¢1 + vy(Atl+At2)
(4.21)
-y Ay )

Since ALN(Atz) given by equation (4.17) is not a function of v_, and

since:

At1+At2 = t2-t0 (4.22)

equation (4.21) can be solved for v _. The result is:

1 ALN(Atz)cos ¢2

v tz'to sin(¢2-¢ ) - R0 cos ¢o + Ayso + Aysl (4.23)
1l
% . Inserting for ALN(Atz) from equation {4.17) gives our final result for
% f vy
: L. . gAt2 sin(9,~¢,)cos ¢, - cos ¢ ( ey + Ay 4
% Y -ty 0 At1 51n(¢2-¢1) 03 s0 sl
=
; %% oo ¢2 {cos ¢ EEE Ax  -Ax - sind 532 Ay -y
E sin(¢2-¢1) v 1 At1 s0 sl 1 Atl s0 “s1

(4.24)

fin i
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Lastly, inserting for vY from equation (4.24) in equation (4.15), gives

our final result for vx:

1 At2 sin (¢1—¢°)sin¢2
x t-~-t |0 At1 si, \¢2—¢1)

- sin¢o + AxsO + AxSl +

sin¢2 At2 ‘\ At2
sin(¢2-¢l) [cos ¢1 KEI Ast_Ax51¢ - sxn¢1 Z%I AysO_Ays

(4.25)

Equations (4.24) and (4.25) are the main results in this section. We

are interested in their form for a couple of special cases:

Case 1:

At-.1 = At2 = At (4.26)

Observer non-maneuvering, i.e.:

Axso = Axsl = vsx-At (4.27)
Ayso = Ays1 = vsy-At (4.28)
R sin(¢.-9_.)sind
N 0 1770 2 .
V% = Vsx * 3Uht { sin(¢2—¢l) sin ¢0} (4.29)
R sin (¢, -0 .)cos¢
_ 0 170 2
vg = vsy + AT { sin(¢2-¢1) cos ¢0} (4.30)

As we can see from equation (4.29) and (4.30), the target velocities
that can be determined on the basis of any three consecutive bearings

from a non-maneuvering target, will depend on the range Ro (can be
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transformed to yield R, by solving equation (4.16) for R, after in-

1 0

serting for vy. Similarily, the range dependence can also be transformed
to R2).

It is important to realize that the same dependence on range exists
when the target velocities are calculated by the Kalman filter. This is the

range/velocity ambigquity in a nut-shell!

Case 2:

Observer not moving at all, i.e.:

Axso = Axsl =0 (4.31)
by o=by =0 (4.32)
R, sin(,-¢,)sin ¢, | .33
Ve T 3w | SIR0,0) TS %
R sin(¢,-¢ . )cos ¢
_ "o 1770 2
vy = 2ht { sin(¢2—¢l) - cos ¢0} (4.34)

In this case, it is possible to determine the target course in-

dependent of range. We have:

) -V -1 sin(¢l-¢o)sin ¢2-sin (¢2-¢1)sin¢6\
: CT = tan v i tan sin(d.-¢_ )cosd. ~sin(d.-¢.)cosd (4.33)
v 1% 2 2% o/

The target velocity, however, will still depend on the range.

e

< These two special cases also can be used to give guidelines for an

i

vhﬁm

intelligent observer maneuver strategy: Start tracking while the
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observer stays put, and determine the target course. When the observer
starts moving, preserve the determined target course in the Kalman filter
(by keeping oc lcw, may be artifically). Then the filter will quickly
adopt the correct range. BAn indication of this can be found from

equations (4.29) and (4.30). We can write:

vx vsx + R-Kl
tan Cp =" " T I REK,
sy 2

(4.36)

w4

where C_ is assumed krown, and K

v and K, are constants, independent of

1 2
range. Equation (4.36) can be sclved for R, to give:

v -v *tan C
SX sY T
e La: -

K2 QCT Kl

R =

(4.37)

4.4 Calculation of Initial Range

By inclusion of a 4th bearing observation, the results of the previous
section can be extended to include the determination of the initial
range, provided the observer.is maneuvering during the observation
period.

When a 4th bearing is included, the following equation can be

included:

A:.N (At3)

= tan(d,.-b,) (4.38)
R2+ALP(At3) 372
Here, R2 is given by:
2 2 .
R, = \/(R1+ALP(At2)) +(ALN(At2)) (4.39)

o e o g s et i oo = -~
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33
?% Since, from equation (4.3):
& ALN(Atz) = (R1+ALP(At2))tan(¢2—¢1) (4.40)
ecquation (4.39) can be written:
R2 = le + ALP(Atz) /cos(¢2—¢l) (4.41)

Now, by use of equation (4.20) we get:

itttk

~ ROC°S¢0 + ALN(Atz)simi)1 + vy(At1+At2)-(Ayso+Aysl)
R = 14.42)
2 cos ¢1 cos(¢2-¢1)

The next step is to insert for ALN(AtZ) from equation (4.17) and for vy from
equation (4.24) in equation (4.42). After some manipulations, we get the

following result:

g ZEI R051n(¢1-¢0) + cos ¢1 ZE; Axso- Axsl - sin ¢1 ZEI_AYSO-AYSE>

2 sin(¢2-¢l)
(4.43)

Next, the two other variables in equation (4.38), ALN(At3) and ALp(AtS)

have to be calculated. We have:

ALN(At3) = ¢os ¢2[vat3 - Ax52] - sin ¢2[vyAt3—Ay52] (4.44)
ALP(At3) = sin ¢2[vat3 - Axs2] + cos ¢2[vyAt3-Ay52] (4.45)
%f Further:
%ﬁ
= . 1 _
%% ALP(At3) 2= ALN(At3) tand)2 + ES§$; {vyAt3 Ayszl (4.46)

7

T
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Now, inserting for ALP(At3) from equation (4.46) in equation (4.38) gives,

after some rearrangements:

cos ¢3

ALN(At3) . W = R2 cos¢2 + V‘g'{'\t3 - AYSZ (4.47)

Next, we have to develop ALN(At3) further. Inserting for Ve and v from

equations (4.25) a. ~ (4.24) in equation (4.44) gives, after some calculation:

R.At At

=2 3 inet.- 3 -
Arylbey) = €, sin(¢,-0y) + cos ¢2[t2—to(Axso + bxgy) AxszJ

(4.48)

Y —
R

‘J, g

At
. 3
- Sln¢2[€;:€6(Ay30+Aysl)-Ay52J

i

Lastly, by inserting for ALN(At3) from equation (4.48), for R2 from squation

(4.43) and for vy from equztion (4.24), equation (4.47) can be solved for

RO' The result is:

S A
i

sin(¢2-¢l)-Ati{sin¢3(At3(Ayso+ ysl)-(tz-to)Aysz)-cos¢3(At3(Axso+
R, .= n >
0 Atl-At3-51n(¢3-¢0)51n(¢2-¢1) -

bx_)=(t,=tg)Ax )} + sin(9,-9,) (t5-ty) {cost, (At Ax_ -t Ax_)-sing, (At Ay =Mt Ay
At, (t5-t,)sin(¢;~¢ ) sin($,-9,)

(4.49)
Equation (4.49) is the final result in this section. An important special case
is obtained when:

L

ot
i
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2At {4.50)
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Then, equation (4.49) can be written:

sin(¢2—¢1){sin¢3(AysO+Aysl—2Aysz)—cos¢3(Axso+Axsl-2Axsz)} +

R =

0 sin(¢3-¢o)sin(¢2-¢1)—3 sin(¢,~¢,)sin(¢,-0,)
.51
3 sin(¢3-¢2)-{cos¢l(Axso-Axsl)—sin¢l(Ayso-Aysl)} (4.51)
If the observer is not maneuvering, we have:
Argo = x5y = bxgy
and (4.52)

AysO = Aysl = Aysz

From equation (4.51) it is then easy to see that R0=0, meaning that range
can not be observed with a nonmeaneuvering observer.

When range Ro is calculated from equation (4.49) or (4.51), equations
(4.24) and (4.25) can be used with this range Ro to calculate the
target velocity components.

Appendix F gives a numerical example on the use of the results in

section 4.3 and 4.4.

4.5 state vector initialization.

Due to obvious reasons, the single Kalman filter case and the parallel

filter case have to be treated separately under this heading.

4.5.1 Single Kalman filter case.

The results in Section 4.3 and 4.4 are based on the assumption of
noisefree bearings. They can, however, be used directly as initial data,
with the associated initial values for the covariance matrix as given in

section 4.6.3 and in appendices G and H.
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In the following, however, two different methods will be suggested

in order to improve the initial values of velocity and range. The approaches

will depend on whether the observer is maneuvering or not over the time

period [0, NT], which we will call the initialization period.

We assume that the following data are available:

1. A sequence of bearing observations, ZN = {¢0, ¢1...¢N}

2. The observers position increments, Axs = {Axso,Ax .. hx }

and Ays = {Ayso,Aysl,...,Ays

N-1

Case 1, Observer Maneuvering

N-1 si Sp-1

}.
N-1

Step 1: Calculate: Ry= f(¢i, ¢i+1' ¢5+2, ¢i+3)' i=0,1,...,N=-3. The
function f is defined by equation (4.49).

Step 2: Calculate: Vei = fl(Ri, ¢i, ¢2+1, ¢i+2)' i=0,1,...,N-3.

v .. = fZ(Ri' ¢if ¢i+1l ¢i+2) 1=0I1I"°IN-3‘

vi

where the functions £, and f2 are defined by equations (4.25)

1
and (4.24).

Step 3: Calculate the initial velocity elements as:

1 N-3

Vx0 T TN-2 2: Vai
i=0
N-3

- 1

v = —— v
0 - i

y N-2 izo yi

Step 4: Calculate the target course as

- X
C, = tan 1(ﬁ—9)
T v
yO

(4.53)

(4.54)

(4.55)




LSRRI, ot

L

3

=
=
2z,

&
-
=

.
=
=

STTTTC T T T R A R e e e

-61-

Step 5: Calculate initial range, R,, from equation (4.37).

0

Step 6

Initial bearing is given as ¢o.

Step 7: Initial position elements are calculated as:

Xy = X+ R, sin ¢0 (4.56)

]
it

o = Yoo t Ry cos ¢ (4.57)

, . a = = 4T .

Step 8: ‘Startlng with X, = [x0 Yo Yo vyol , process the bearings
{¢l, ¢2,..., ¢N} through the Kalman filter, to give the
resulting state vector at t = tN’ where the track is offically
started.

Case 2, Observer not maneuvering

In this case, equation (4.49) is worthless, and no range information
can be subtracted directly from the bearings. In this case, the

following steps are proposed:

Step 1: Select R0 as the sensor's maximum range. (If possible,

take environmental conditions into account).

Step 2: Calculate: v ; = fl(Ri’ ¢i’ ¢i+1' ¢i+2)

Vgi = EaRir 50 b0 0505)

R, = f

41 T E3Ryy Vogr G50 P54)

i=0,1,2,...,N-3. The functions f1 and f2 are given by

equations (4.25) and (4.24), while the function f3 can be

found by an extension of equation (4.16), as:
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R,-cos ¢, + (v .At.-Ax .)
i i vi i si

Ri+1 = cos ¢i+1 (4.58)
Step 3: Calculav.:
1 N-3
Vi T B2 12-;0 Vyi (4.59)
N~3
v, = (4.60)

beury v_.
y N-2 oo Yi

Step 4: 1If target identification and classification has been performed
the knowledge of this target class's maximum velocity, v,..r
will presumably be known. Otherwise, some value of vhax can
always be specified for submarines, surface ships, etc.

Calculate the initial velocity components as:

- . MAX
vxo = min ————————:;—- . vx, vx {4.61)
v. + v
v
— . MAX
= . .62
vyo min B vy, vy (4.62)
\/v+v
Xy

Steps 5-9: Same as Case 1, Steps 4-8.

4.5.2 Parallel FPilter Case
For this approach, when we have M parallel filters to initialize,

a slightly different initialization scheme has to be suggested.
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We assume that the same data are available as in Section 4.5.1,

and we will have the same two cases, depending on the observer's maneuvering

scheme:

Case 1, Observer Maneuvering.

Steps 1-5: Same as in Section 4.5.1, case 1.

Step 6: With a previously defined ARl, calculate R.., i=1,2,...,M, as:

0i

- M . _ 1
ROi = Ro -3 ZSRl + (i 2)ARl (4.63)

Step 7: Calculate the velocity components V*Oi and v o from equations
{(4.25) and (4.24), i=1,2,...,M.
Step 8: 1Initial bearing for each of the M filters is given as ¢Oi = ¢O'

i=1,2,.-- ,M.

Step 9: 1Initial position data are calculated as:

X041 = %g0 * ROi-31n ¢0 (4.64)

Yoi = Yso + ROi cos ¢0 (4.65)

i=1,2,...,M.

Step 10: Same as Section 4.5.1, case 1, step 8 for each filter.

Case 2, Observer not maneuvering

Steps 1-6: Same steps as in section 4.5.1, case 2, resulting in R

0 at

the end of step 6.
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Step 7: With a previously defined AR2 > ARl' calculate ROi' i=1,2,...,M,

as:
R.. =R, - i-AR (4.66)

(R0 is assumed to be near the maximum range for the bearing sensor,

and any Rbi > RO should not be necessary).

Steps 8-11: Same steps as Case 1 above, steps 7-10.

4.6 Covariance Matrix Initialization

The next subject toe be addressed, is the selection/calculation of
initial values for the covariance matrix, Po. We will only derive the
initial covariance matrix for the Cartesian system model. (Necessary
transformation to the Polar coordinate system case can be done through
equation (3.48)).

Since the philosophy behind the parallel filter approach is totally
different from the single Kalman filter approach with respect to assumed
initial accuracy in range, these two cases have to be treated separately

also under this heading.

4.6.1 Single Kalman Filter Case

Three different apprcaches to covariance matrix initialization will

be outlined under this heading.

4.6.1.1 Aidala's Approach

Aidala {11] has treated this subject very thoroughly, however, his

model of the target moticn analysis problem has no process noise.




=3

sttt

T RO

it

TIEY
Wi A

L Kb T G g i of oo g M B o B N 8
Rl s e T S A e

Sy
Yol

’
i

flarty

T et e

s

e

e

il

e N
oS SR B

W e iy wwxm

ﬂﬂ,’.w&fﬂﬁlﬁ*’ﬂﬁw RGN G g
o !

e

o

B

-65~

Consequently, his time update equation for the covariance matrix has

the form:

_ T

i.e., no increase in uncertainty with time, since the term G(T)VkQ(T)T
from equation (3.18) is lacking. Since his conclusions depends entirely
on this unrealistic assumption, his results are not appiicable directly.

Aidala proposes to select
P.=0_-1I (4.68)

and shows this selection's superiority in terms of covariance matrix

stability over the selection

F02 0
X
o2
r
02
Po = v (4.69)
0 o
nd V J

By a pseudolinear formulation of the tracking problem, obtained
through a nonlinear transformation, Aidala transforms the nonlinear
observation equation to a linear equation, with the nonlinearities
embedded in the observation noise (see also {7]. The measurement

standard deviation for this model turns out to be:

0 = B pealol .70
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and this is the only term containing R and 00 in the covariance equations
for the pseudo-linear filter.
The covariance matrix of the pseudolinear filter, ﬁk k’ is related
r

to the covariance matrix of the oririnal filter, s in the following

P,k
way, if equation (4.68) is used for initialization:

Lk (4.71)

o, =/ (4.72)

and the covariance equations for - the pseudolinear filter is completely

independent of range and oo(ﬁ = 1I).

0,0

However, the reason why this form is possible, is the form of the
covariance time update equation given by equation (4.67). If equation
(3.18) was used, the initial value of the variance, og, can not be
collapsed into the measurement variance term, as given by equation
(4.70).

Now, is it feasible to adapt Aidala's results for our model, where
time updating of the covariance matrix is performed according to equation

(3.18)?

This question is not possible to answer without performing simula-
tions.
For the case with a nonmaneuvering observer during the initialization

phase, it is therefore suggested to incorporate the selection of the

initial covariance matrix
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0 0 (4.73)

as one possibility to be explored.

4.6.1.2 General Approach

The most commonly used initial covariance matrix is probably of the

form: - -
Py Py O 0
Pay Py O 0
P = P = (4.74)
O,-1 0 0 o P33 Py
0 o Paz Py
’ -
where:
2 2 . 2 2
Py, = cos ¢o~(Ro-0¢o) + sin ¢0~0R0 (4.75)
P., = P.., = cos ¢ _sin¢ -[02 -(R.C )2] (4.76)
12 = Pn 05 ™0™ % = Ta%,
. 2 2 2 2
p,, = sin ¢0— (Rooq) )" + cos d)o-OR (4.77)
o] 0
2 2 . 2 2
P4 = COS Cj- (vy:0c ) + sin‘cy-0 (4.78)
0 0
=p,. = sin ¢ -cos ¢ [0° ~(v.-G_ )°] (4.79)
5 P3q T Pz T S0 G708 1% "o ¢y :
%: : .2 2 2 2
E Py4 = sin co(vocc Y° 4+ cos o', (4.80)
The

usual (ad hoc) selection of parameter values in equations {(4.75} -

(4.80) is the following:

BT S
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¢0 = the observed bearing at time tg
c¢ = the sensor's standard deviation
0

Ro = the sensor's max range.

OR = %—(the sensors max range)

Vor oc and Ov : completely picked out of the air. As an example:

0 0
Vg = 10 m/sec
Gc = 30°
¢]
Ovo = 20 m/sec.

4,6.1.3 Suggested Approach

If the state initialization methods given in section 4.3 and 4.4
are used, a better initial covariance matrix can be obtained.

Like in the state vector initialization case, the approach will

depend on the observers maneuvering scheme:

Case 1, Observer Maneuvering.

Step 1: Range can now be calculated from equation (4.49). Calculate

the initial variance for range, 0; » through the approach given
0
in Appendix G.

Step 2: The velocity elements can be calculated from equations (4.24)

and (4.25). Calculate the velocity elements of the covariance matrix
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through the approach given in Appendix H.

When the "smoothing"” approach given in section 4.5.1 is used, the
resulting initial values of the state vector should be better than the
resulting initial covariance matrix from this approach will indicate.
However, since we are interested in an initially "open" filter (a
filter that responds to the measurements), we suggests not to take
this into account. If the actual accuracy obtained through the methods
given in section 4.5.1 turns out to be much higher than the resulting
covariance from this approach, it will, however, be worthwhile to take the

"smoothing" effect into account also for initial covariance calculations.

4,6.2 Parallel Filter Case

With M filters running in parallel, we are interested in each
filter being as "stiff" as possible in range, since it is likely that
one of the filters have an initial range close to the correct one, as
will subsequently become apparent through an observer maneuvre (see
section 3.7 and 4.5.2).

For the parallel filter approach, the only difference between the
two cases: observer maneuvering/not maneuvering, is the size AR between
the initial values of range for each filter (see section 4.5.2, ARl oxr
ARZ)'

The following approach is suggested:

AR
Step 1: Select GR =5

0




B e i e = S O

-70-
Step 2: Select 0¢ = the sensors standard deviation.

0
Step 3: Given the initial range ROi’ i=1,2,...,M, calculate the

position covariance elements for each filter from equations

(4.75)-(4.77).

Step 4: Calculate the velocity elements of the covariance matrix

for each tilter through the approach given in Appendix H.
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5. MANEUVRE DETECTION AND HANDLING

Up to this point we have assumed constant course and speed for the
target. This assumption will now be removed, and we will allow our
target to make abrupt changes in course and/or speed, of random sizes,
and occuring at random time instants.

Several different approaches to the maneuvering target tracking
problem have been proposed in the literature., We will in the following
give a short survey ci some of the most important approaches.

Jazwinski's [25] limited memory filtering approach is probably
the simplest approach. By preventing the covariance matrix elements
from decaying below certain thresholds, resulting in filter gains above
certain values, the target state vector dependence on the latest ob-
servations are increased. However, the tracking performance of this
approach during nonmaneuvering periods of the target will decrease
due to higher dependence on the observation noise.

The natural solution to this problem is to model the target under
the nonmaneuvering hypothesis, and in addition to ir:roduce some adaptive
maneuvre detection scheme which can step in and give the fiiter limited
memory for a short period of time, after a maneuvre is detected ({4},
[20].

A further extension to this approach is suggested by Willsky and
Jones [26], [27]. They suggest the possibility of simultaneously with
the detection of an abrupt system change, to estimate the size of the

change and to perform a state variable correction directly, in addition

~71~
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to give the filter limited memory temporarily. Similar approaches are
outlined in {9] and [10].

Another avenue along which many researchers have been working, is
to model the target maneuvres as a semi-Markov process, whereby N possible
acceleration inputs are selected according to some a priori probabili-
ties. In its pure form, this approach requires an infinitely growing
bank of paralle. “illters, N initially, N2 for the second measurements,
etc. Different approaches to reduce this described growth are proposed
ir. the literature, in order to get practical, realizable filters
[141, [10]1, {21}, [22], (28], [29].

Another interesting approach was proposed by Tenney et al. [24].
Two extended Kalman filters are operating in parallel, one with a
large artificial system noise covariance term added to give the filter
limited memory and thereby allowing it to track fast maneuvres, and
the other filter with small artificial ncise, making this filter re-
stricted to tracking of constant course/speed trajectories. Maneuvre
detection is performed by comparing the behaviour of the two filters.

None of the approaches to maneuvering target tracking resumed
above, deal with a tracking scheme based on hearing only information.
Due to the low observabilitv of the system,maneuvre detaction und::
these circumstances are more difficult. Most of the papers above claim
for high observability in order to make efficient maneuvering target
trackers.

Another important fact to realize is the possibility to separate

the maneuvering target tracking problem into two subproblems:
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1. The maneuvre detection problem.

2. The maneuvre handling problem (i.e., When the maneuvre

is detected, what actions should be taken to allow the
tracker to adapt to the new target course/speed).

This separation is imbedded in the approaches given iu [4], [9], [24],
[26]) [27], and will also be used in the approach propused in this report.
The lacking observability during time-periods when the observer

is nonmaneuvering, results, as we have seen in Chapter 4, in the
range/velocity ambiguity. Unless special preventing actions are

taken, the Kalman filter's reaction to a target maneuvre can be a range
jump as well as a course/velocity jump. The obvious preventing action

is to keep the range variance 0; low, forcing the filter to adapt course/
velocity as a maneuvre detection reaction, and leave the range to target
unchanged. This seems, however, only feasible to do if we have arrived
at a stable target track with correct range prior to the maneuvre. If
the target maneuvre takes place while the tracker still is in the initiali-
cation phase, with a poor linearization trajectory in range, our wish

is to keep a high range variance 0; in the Kalman filter, so that the
filter easily can arrive at correct range if/when the observer performs

a maneuvre, and range becomes observable.

These conflicting preferences on 0; are among the reasons why
maneuvering target tracking is harder to solve for the bearing only
measurement case than for cases with complete observability.

One possible way to resolve this conflict, is to make use of our

knowledge of the observers posit.on history and future maneuvre in-

tentions. If, for the global iterated filter case, the observer has not
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performed maneuvres during the iteration interval, and generally for all
the filter approaches, if the observer is not going to start maneuvering
in the near future, it is no point in keeping Oi high, since range can't
be observed from the cobservations in any case. However, we will get a
possible conflict if the observer and the target are maneuvering at
the same time. The solution to this problem has to be decided upon
through simulations.

A proposed approach to maneuvre detection and handling will be

given in the following.

5.1 Maneuvre Detection

The most powerful and best theoretical fundamented approach to
maneuvre deteczion seems to be the generalized likelihood ratio best
described in [30]. This approach has been used by Willsky and Jones

[26], [27], by Tenney et al. [4], and is alsc suggested by Maybeck

[23].

Following the approach given in these references, two hypothesis

on the form of the innovation signal can be assumed:
HO: ek = vlk (No maneuvre)
le € = mk + vlk (A maneuvre has occurred.)

where vlk is a zero mean white sequence with variance:

2 T
= . '1
c\)lk Hk Pk,k-lﬂk + wk (5.7

If we restrict our attention to a "data window" containing the N

most recent observations, our generalized likelihood ratio test can be
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1 given by:

- k ei >

- i=k-~L 0\) Hl
1i

where ck, L and Y are design values which has to be decided upon through

simulations. Cp is a (possible) varying term independent of the observed

3
s
3

e

(i

residual values. If we define:

Ylk = ¢ Y (5.3)

R i A e

the likelihood ratio test can be given by

k ei >1
E 02 < Ylk (5.4)
i=k-L, " 13 H o

The reasons why we incorporate the possibility of having a varying

threshold Ylk are the following:
1. We want to inhibit maneuvre detection during initialization
phase.

2. We want to inhibit successive maneuvre detections during the

same maneuvre.

3. We want to inhibit maneuvre detections during maneuvering
phases of the observer, if we have reason to believe that our lineari-

zation trajectory prior to the observer maneuvre is poor.

The meaning of equation (5.4) is obvious: The actual variance of the

£
==

innovation signal is compared with its expected value over the most

ll
v

e e 0

P A




76~

recent L samples. If ei becomes consistently larxger than predicted over

the selected "time window", a target maneuvre is detected.
A few guidelines can be given concerning the selection of the design

parameters L, ¢, and Y (alternatively L and Ylk):

k

L has to be selected as a compromise between fast detection and the

e false detection rate. The longer time window the slower maneuvre detection
and the less probu..ility for false maneuvre detection. The shorter time
window, the faster maneuvre detection, but at the same time, the higher

probability for false detections.

Y can be decided upon by looking at the case with stationary
circumstances: Tracking of a target going with constant course and

speed, where our linearization trajectory is approximately correct.

§ With ¢ = 0 and the process noise covariance matrix Vk' the observation
E noise variance Wk and the "time window" (decided by L) given, Y can be

selected to give a false alarm probability close to zero.

o has to depend on a number of parameters, and may have different

e size and time dependence, depending on the state of the filter. We

may suggest the following structure of Cp:
~a(k-k1)T

Ke k>k

c, = (5.5)
k 0 k <k

where T is the sample time, and kl is the sample when a certain event

takes place, like:

1. Initialization

Tl

R

2. Maneuvre detection

TR |

(h
A

) 2Dy

3. Sstarting of an observer maneuvre




yrraat s

'

e

7RI T LA

-77-

The parameters K and o are event-~dependent parameters which has to be
selected through simulations in order to give acceptable false alarm
probability in the transient-period following the actual event. These

parameters will also depend on the "time window" LT, on V and

k' "k’ Fo
on possible direct manipulation on the covariance matrix following a
detected maneuvre.

The maneuvre detection approach described in this section should be
suitable for all the filtering approaches given in Chapter 3. Whether
it is the best approach to maneuvre detection, independent of the filtering
approach, is unknown.

For the iterated filtering approaches giver in Chapter 3.4 to 3.6,
we would suggest to include an the simulation study an investigation on
which value of the innovation signal that should be used in equation (5.4),
the first or the last iteration value.

For the parallel filter case, we propose to run the maneuvre detection

algorithm only on one filter, namely the filter which, at each time in-

stant kT, has the highest probability function p(ﬁki = Rk/zk).

5.2 Actions ¥oilowing a Detected Maneuvre

As described in the beginning of this Chapter, the most apprcpriate
action to take when a maneuvre is detected, is to give the filtering
algerithm limited memory temporarily, allowing the filter to adapt to the
new target course and speed more easily.

One important fact to realize, however, is that there is a certain
time delay between the beginning of a maneuvie and its detection. This
time delay, say At, depends on a number of factors, however, some nominal

value of AL should be possibla to obtain through simulations.
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If we don't take this time delay into account, and impose limited
memory on the filtering algorithm only from the time instant kT, when the
maneuvre is detected, the observations taken during the intermediate
period from the occurrence of the maneuvre and its detection, will not be
utilized optimally. The result will be an accumulated range error, that
can not be driven to zero unless the observer performs a maneuvre after
the target maneuvre.

In order to reduce this range error, even for the case of a non-
maneuvering observer subsequent to a target maneuvre, the following steps
are suggested:

1. when a maneuvre is detected, fetch a stored version of the

state vector and the covariance matrix valid at time

(kT-At) from the computer memory.

2, Give this time version of the filter limited memory by increasing

the velocity elements of the covariance matrix.
3. Re-integrate all the observations taken in the time interval
[kT-At, kT].

The result of this iteration will be a discrete jump to a more
correct position and velocity for the state vector at time kT, the same
time instant when the target maneuvre was detected. The effect of this
approach is thus the same as achieved Ly Willsky and Jones [26], [27],
and estimate of the size of system change, and a direct correction of the
state vector. The methods are, however, different.

The prize that has to be paid for this achievement, however, is
substantial. The following time sequences has to be stored in the computer

Wemory:
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Observation sequence:

2 = o per 2 genypae B! (5.6)
Obsexrver x, y-position:

X =.{xs(kT—At)""’ xSkT} (5.7)

YS = {ys(kT-At)""’ yskT} (5.8)
Target state vector

X = X pprener gl (5.9)
covariance matrix

Ro= B ppreeer Bt (5.10)

(Since we don't know when a maneuvre detection might occur, we have to
store the sequences given in eq. (5.9) and (5.10), even if the only
values of interest to us at the time of maneuvre detection are ng—At)’

It is interesting to realize, that in the case with global iterated
filters, the sequences given by eguation (5.6)-(5.8) and (5.10) are already
stored, if MT > At (see section 3.6). 1If we adopt the global iterated
apprcach, it is not necessary to store the state vector sequence given by
equation (5.3). The state vector at time kT-At can then be found by time-

backdating. This approach should be investigated through simulations.

5.2.1 Imposing Limited Memory on the Filter

The course and velocity variance can be calculated from the

velocity elements of the covariance matrix (both in the Cartesian and the
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Polar coordinate system case) through the following egquations:

2 . 2 R 2
cv = p33~51n c - (p34+p43)51nc ang ¢ + D408 © (5.11)
02 =1 [ coszc + (p,,+P,.)sin c cos c + sinzc] (5.12)
c = 2 'Pa3 P34"Py3 Paq .

v

Following a target maneuvre detection, we now want to increase

¢ by AGC and O, 2 ACV. Then, if we define:

Sv

(0V+on)2-oi (5.13)

(oc+Aoc)2 - oi (5.14)

Sc

the result on the velocity elements of the covariance matrix will be:

Py Pay t vzcoszc . 8¢ + sinzc - Ov (5.15)
+ + sin ¢ cos c[bv - v¥c] (5.16)
P34 ™ Py
Py3 ¥ Pyy * sin ¢ cos c[6v-v25c] (5.17)
2 .2 2
Py € Pyy + Vv -sin c-8¢c + cos“c.bv (5.18)

5.2.2 Actions Dependent on the Filtering Approach

The design parameters in the maneuvre detection algorithm, and the
actions following a detection, may very well depend on the tracking
approach, i.e., the mathematical models of the system dynamics and the
observation, and the version of the filter equations. A "tuning” of the
maneuvre detection algorithm to each filtering approach may therefore

be necessary, and special actions following a maneuvre detection may be
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necessary to get the best possible performance for each filtering approach.
In the follcwing we will discuss some of the actions that may be

necessary (and feasible) to take for the global iterated filters, and

for the parallel filter approach. Only simulation results can tell,

however, whather further "tuning" of parameters or special actions can

give better performance of an individual filtering approach, so this topic

will not at all be exhausted by the following discussion.

5.2.2.1 Global Iterated Filters

The selection of the process noise covariance matrix V. is among

k
the parameters that influence the "covariance level" of the filter, and
thereby the size of the elementsof the gain matrix Kk. In fact, the degree
of limited memory can, to a certain extent, be controlled by Vk'

Generally, Vk is decided as a compromise between tracking performance
when the target is going on straight course and speed, and the filters
ability to track small maneuvres (without alerting the maneuvre detection
and handling-system) .

Now, for the global iterated filters described in sections 3.6.1 and
3.6.2, a better tracking performance can be obtained during nonmaneuvering
periods of the target with larger values of the elements of the process
noise covariance matrix Vk' The reason for this is the smoothing effect
that is a resut of the iterations, tending to stabilize the target velocity
vector when the target is moving with constant course and speed.

At the same time, larger values on the elements of Vk witl allow the
filter to follow small target maneuvres better.

As a result of this, however, the maneuvre detection problem may

turn ou.. to be more difficult, since higher values of the elements of the
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gain-matrix Kk will tend to decrease the value of the innovation signal
during target maneuvres, at the same time as the expected variance of
the innovation signal will increase due to higher values of the elements
of the covariance matrix (see equation (5.1)). An obvious result will

be that different values of the design-parameters L, Y and Ck have to be

found.

If the iter ion interval [ (k-N}T, kT], rior to the maneuvre
detection, is larger than the interval [kT-At, kT1, where At is the
nominal time delay between the occurrence of a maneuvre and its detection,
i.e., if NT > At, an obvious action to take is to decrease the iteration
interval temporarily in such a way that it is contained in [kT-At, kTIl.
(Premaneuvre observations should not be taken into account when post-
maneuvre course and speed calculations are performed). Since the ob-
servations taken in the time interval [(kT-At),kT] comes from a
maneuvering target, it might even be interesting to look at the possi-
bility of deviding the iteration interval [(k-N)T, kT], N = At/T, into
subintervals, so that the observations contained in each sub-interval
are more consistent with the constant course and speed hypothesis on
which the mathematical model of the system dynamics are built. A reali-
zation of this idea in the global iteration context could be a iteration
interval [(kl-Nl)T, le], where N

< N, starting with k = k-N, and

1 1™

finishing when k1 = k (a sliding iteration "window" over the greater
iteration interval [(k-N)T, kTl).
The "serial" filter approach, which is a special case of the global

iterated filter (see section 3.6.3), will also ne~d some special treatment.




e B o
e

il

-83-

First, maneuvre detection should be made on the basis of the
innovation signal at tiwe k, ek. (As can be seen from equation (3.96)
this approach has, formally, two observations, zk and zk-N' and

consequently two innovation signals, € and ek—N ).

When a target maneuvre is detected, we propose to reinitialize

3 tte filter. It is assumed that we have NT > At (this is one of the

design criterias for N). The reinitalizing sequence will consist of

the following steps:

1. 1Initialize a single Cartesian Coordinate System filter

with
X = Xk T Een (5.19)
and
P, = Psz'k (5.20)
where P is the lower diaconal part of the co-
22k,k

variance matrix for the serial filter, given by:

Prlik,xk Tizk,k
p . = 5.21
Pk,k ( )

Paik,x  Fazx,x

o

2 by e
g R

Each of the submatrices in equation (5.21) are 4 by 4

bt

matrices.

2. Run this single filter from time (k-~N)T up to time
(kT-At). (Time kT is the time when the maneuvre

was detected).

R SRR s e

iy

e

KA

|
Ao s
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3. At time (kT-At), impose limited memory on this singie
filter as described in section 5.2.1. For reasons of
convenience of notation, we now define

sz = kT-At (5.22)

Then after increasing the velocity elements of the covariance
matrix as described in section 5.2.1, the resulting value of the

covariance matrix at sample k2 is given by P The state

k L]
vector is given by x - 2
2

4. Run the single filter from time sz up to time kT, where a
discrete jump in the position and velocity at time kT will

be the result (as compared to x,, of the serial filter at

1k
time of maneuvre detection).

5. Continue to run the single filter on new observations up to
time (k2+N)T. Now the full serial filter can be initialized,

with the following initial values:

P 0
N k2+N
po = (5.23)
0 P
k2
and
=T
50 = Ek {5.24)
2

5.2.2.2 Parallel Filters

As was proposed in section 3.7, the number of parallel filters can
gradually be reduced from M towards 1 as the filters with unlikely ranges

are being pruned off. It is therefore obvious that we have to consider
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two separate cases for maneuvre detection with this approach. namelv:

Maneuvre detection when the filter with correct range is
still not recognized.

Maneuvre detection when only the filter with corxrrect range
is updated.

In order to save computertime in Case A, we prooose to run tha
maneuvre decection algorithmn only on one filter, namely th2 filter which,

at each time instant kT, has the highest probability function p(§k = Rk/zk).
i
(Intuitively, it don't seem likely that one of the parallel filters will

be better in identifying a maneuvre, since range is not observable. If

UR is kept low, however, any of the filters should be able to detect a

target course/speed change).

For the parallel filtexr approach, it seems likely that we can give
up our claim to take the detection delay At into account, without degra-

dation in tracling performance, so this will be proposed. The reasons

why this is possible, are the following:

1. After maneuvre detection, independent of case 1 and 2 above,

we intend to reinitialize all the M filters, with different
ranges centered around:

Case A: The range calculated from the state vector

given by equation (3.110).

Case B: The range given by tl.e remaining filter.
An eventual accumulated range error
due to the detection delay At, wiil
then be picked up by one of the re-

initialized filters.
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2. In case A, the range for all the remaining filters may

be wrong anyway, even at the time when the maneuvre started.

3. If the time delay should be taken into account in case A,
we wowld have to store the state vector and the covariance
matrix for (in the worst case) all the M filters over the
last N samples, where NT > At. This would claim for a lot

of comrmter memory capacity.
The re~initialization values for the state vector and the covariance
matrices for the M-filters should depend on the filter status (case A
or B) at the moment of maneuvre detection:
Case A: The center-range filter's gtate vector is given by

equation (3.110). From this state vector, the center

range RO can be calculated. Then, selecting the range

difference between the filters, ARl, each filter's initial

range can be calculated from equation (4.63), and the
initial position data subsequently from equations (4.64)
and (4.65).

The reinitialization values for the velocity components

S P e o
RIS ) S e

could either be calculated from equations (4.24) and

(4.25), or we could simply give all the M filters the
same velocity, given by the state vector at the moment
of maneuvre detection (equation (3.110)), and let the
Kalman filter algorithm adapt the velocity components

to each individual filters range.

Case B: Center range is given by the remaining filter.
Since, in this case, range is assumed to be
more correct, the range difference between each
filter after reinitialization should be much less

than in case A. With a selected AR2<AR1,
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each fllter's initial range can be calculated from
equation (4.63), (substitute AR2 for ARl)' and the

initial position data subsequently from equations
(4.64) and (4.65).

Since, in this case, the range difference between
each filter is smaller, the remaining filter's velocity
components can be used as initial values for all the
M filters.

Concerning the re-initialization values for the M covariance matrices,

we propose to consider two possibilities:

1. Use the initialization procedure described in section 4.6.2.

2. Use the covariance matrix for the remaining filter (case B),
or for the filter with highest p(ﬁki = R/zk)(case‘A), but
modify its elements in the following way:

2 2
plli + Pll + cos ¢ 0¢0 (Ri—RO)

plzi - 9120 - sin ¢ cos ¢ ¢ (R R )

PZli <« by, - sin ¢ cos ¢0 ¢ (R R )

0
P <« 2 2 2
22 Py, + sin ¢o ¢ (R Ro)
0 0
where RO' pllo' P120' p210' p220 and 4b are referring

to the center filter, and Ri, p11 and

' P1g 0 Poq,

i i i

p22 , 1=1,2,...,M are the initialization values of
i

the position elements of the covariance matrices for

the M parallel filters.
In addition to this , impose limited memory on the
filters by increasing the velocity elements of the co-

variance matrices as described in section 5.2.1.

R .




!

I

-88-

Which of the two proposed methods for covariance matrix re-

initialization that should be selected, has to be decided upon through

simulations, as the procedure giving the best result.
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6. SIMULATION GUIDELINES
The development of filtering approaches, initialization routines

and maneuvering target tracking approaches given in the preceding chapters,

s S R e O

Xy
i

have to be verified and compared through an extensive simulation study.

u
i

Each algorithm should be optimized with respect to design parameters

e PR Eer

like process noise variance, maneuvre detection parameters and actions, etc.,

ikl
it opa PO A

before comparison between the different approaches can be performed.

it

In order to arrive at correct conclusions, the target-obsexver

geometry used in the simulations are extremely important. On the other
hand, in order to reduce the number of simulation runs to an acceptable
level, only a few different geometries should be considered.
The simulation study should further focus on two different problems:
1. The initialization phase, each filters ability to achieve
correct range estimate as fast as possible.

2. Maneuvre detection, ability to track a target through

different maneuvres (small/large course/speed changes).

The simulation results should be visualized on plots giving range
error, velocity error and course error as a functionof time. x,y-plots
should also be provided.

It is believed not to be necessary to run Monte Carlo simulation
studies on all the 10 different approaches given in Chapter 3. A few

single simulation runs for each filter approach for a small nvmber of

WO gy gy

target-observer geometry should reveal which approaches are worth further

study.

i
R A U

iy

The most promising 2 or 3 approaches should then finally be compared

=
=
Ly
3
=
=
=
B
B
=
=
B
%
S

i

through Monte Carlo simulations.
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APPENDIX A

Ui

LINEARIZATION OF £ (x,)

We have _ T
¢k + '(:an'_1 <f—fflgi———a

TR N AN
ERTER I uu’mnl\"w"uq ok

1& + Aka
2 2
£ = Vimrn 0% + A (a1)
ka
Vyk
- -
We intend to calculate
Bfl Bfl 8fl Bfl
3¢ R ov v
X y
af(ﬁi) 3f2 sz sz 3f2
F(gi) = ={"3¢ “OR dv_ v (n2)
351: x ¥
0 0 1 0
5 0 0 0 1 |

In order to be able to calculate the different elements of F(ﬁ) . the

foliowing derivatives are needed:

H 3

i Rk =0 (A3)
3 L

3 S _ -AL (ad)
§ LI pk

-93-

) ‘ﬁv‘. { “HMWWWW




-94-

T"’iﬁ = AL (a5)

ft
[

(26)

W =0 (A7)

T =T * cosd)k (28)

(ac?

P =-T sinf, (a10)

-3;;2'-‘- = T cosd, (a11)

Next, we define the following two variables:

Aka = (1& + Aka)sin ¢k + ALNk . CcOos ¢k (a12)
AL&k = (Rk + Aka)cos ¢k - ALNk sin ¢k (a13)
Then we bhave:
2

of, o1 A, ok (Rt ) + ALy kak*Aka)

Ao =1- = (a14)
quk 2 2

Res1 Rl
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mvm— 2 - ——

SN

Bfl ) T[(Rk+Aka)cos ¢k-ALNksin ¢k] ) TALyk
v

3 3
xk Ret1 Res1

8f1 ) —T[(Rk+ALPk)sin ¢k + ALNk cos ¢k] _ —TAka

v 2 - 2
vk Ren1 Ret1

of, A Ay

LN Rena

af2 _ Rk+ALPk

Ry Ren

3f2 T[(Rk+Appk)si? ¢k + ALNkcos ¢kJ } T .Aka

Vox Reaa R+t

of TI(R +AL  Ycos ¢, + AL _ sin d ] TAL k
2 TR x ¥ hgsin ik—x

vak Rk+1 +1

(Al15)

(A16)

(a17)

(A18)

(A19)

(a20)

(A21)

Equation (Al4)-(A21) can now be inserted in eq. (A2), and we have our

final result:

Rk(Rk+ALPk) -ALNk TALyk -TAL <k
2 3 2 2
Ret1 R Res1 R
F(§ ) = uRL‘_i‘_L_‘E R ok AL e TAL o
Res1 Res1 Ret1 R+l
0 0 1 0
0 0 0 1

(A22)




APPENDIX B

CALCULATION OF THE ADDITIONAL TERMS ¢, AND FOR THE SECOND ORDER
GAUSSIAN POLAR COORDINATE SYSTEM MODEE FIL .

1. CALCULATION OF Sx

of. | T
c. . = trace

i .
kl axp aﬁ . Pk'k ’ 1"1' LR .4 (Bl)
TS

Now, [Bfi/agil has already been calculated in APPENDIX A. We have:

_ . =

i’_fl Rk(Rk+AL k) -ALNk TAL X —'I‘Aka

2 : 2 2 2

o Res1 Res1 Res1 Resa

sz PkALNk Rk+Aka TAL & TAL ok

a:_r; Rl Ren1 Rena Res1

{B2)

F(xg) = .

_a_f__ 0 0 1 0

)

9%, 0 0 0 1

P

u % L -
Next, we define:
Rk(Rk+Aka)/Rk+1

2
] [afl .'T 5 ALk Res1
Fl = =
P . 2
o I R K
2
| ~TAL o /Resa

-9~

(B3)

-
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R AL R
T (RHAL OV /R
F2 = = (B4)

oy |, Ok | TAL /R
AL xRl

ot

The elements of the two 4.4-matrices F1 and F2 are calculated subsequently:

ALNk Ik TR 2 2

£, = - ——— R - AL , - A (B5)
Rk+1

€1 =-*— . [AL, - R® . + 2012, . R ] (B6)
12 =4 - AL - Ry 204y - R

Ret1

T-Re
fl,=-—— [(Rk+ 2AL])Sln b + 8Ly (R HAD p)cos ¢, ] (87)

+1

£1 =T.ls‘ [_(2 -22)cs¢ + 2 (R+ L _)sin ¢ ] (B8)
14°- 32 Riyy - 28Lyg) cos & + 2Ly, (R+ Lo X

+1
£l = —— [AL_ R, + 2412 - R] (89)
21 = T2 ARy + 20y o Ry

Re1

20k
£y, =3 R + ] (810)

+1
f“- = - ._.IL.. [ 2 * Cos ¢, -2 AL ] (811)
1,3 2 +1 s ¢ - AL, AL
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£1,, =—'£—- Ri -+ sin ¢ + 2L AL (B12)
Resl
£1,, = R -fl,, (13)
T
f132 we [Rk+1 « cos ¢' + ZAL (Rk'*-AL )1 (B14)
R+
2
27°AL AL
f1,, = - ————2———4" xk (B15)
Res1
o2
£1,, = 5 [Rk+1 + 2AL ] (B16)
Rk+1
fl,, = R - fl23 (B17)
£1, = - —— (R _ sin ¢ - 2AL . (R +AL )] B
42 2 Ry X wk Bl (B18)
Rl
2
fly3 = = T (Rpyy - HLupT,d (B1Y)
Ren1
£1,, = -£l (820)
R
- _ K 2 2
£2), = 3 [AkaRk+l + Ay Rk] (821)
e+l
AI'Nk 1.2 2
£2., = |Resr = Alag Pkl (B22)




_ 2 _
f213 = -3 [Rk+l cos q>k ALNkAL xk] (B23)
Res1
T 2
f214 === [Rk+lsin O + ALNKALyk] (B24)
+
1 2
fzzl— 3 [AkaRk“_1 RkALNk(Pk-!-Aka)] (B25)
Res1
2
AL
£ = K (B26)
22 3
k+1
£2 = -1 [R2.. sin ¢, - (R +AL_ )AL 1 (827)
3 Kar P ™
Ryt
£7 = —T [R%. . sin ¢ - (R +AL )AL 1] (B28)
28 = 3 kel kT Bk Tk
RA
- B29
f231 f213 ( )
- B30
£2, = £2,5 (B30)
”® 2 2
- _ B3l
f233 3 [Rk+l Aka] ( )
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2
T°AL _ -AL
xk Yk
= - B32
£2., 2 (B32)
Rk+1
£2 . = B33
al f214 (B33)
£2,, = f2,, (B34)
£3,,= £2,, (B35)
|
2.2 2
T - AL}
£2,, = B T vk (B36)

3
Re+1

Now, having calculated all the elements in the two matrices Fl and F2,

the vector g, can be calculated from eguation (Bl). The result:

= 1. . jipij (B37)

Jo
%

e
L

b -

where Pij is the (i,j)th element of the covariance matrix Pk X’
14
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2. CALCULATION OF L,

The matrix Lk is defined by:

S e

I, = % (9%£p%3%¢) (B38)

AR K

and T:

—

4
L f1
i=1

P

1i

il

4
L fl
i=1

4

cese L f1

VP, .
1i i2 i=1 1i

Pi4

§< : In order to be able to calculate Lk' we first define te two matrices S

(B39)

T~
3 T= | > (B40)
A - ~

it A R i g
AR Fra AR P

e i
sk

ok

Ll

ik
it

P

i

Then the 4 nonzero elements of the matrix Lk are given by:

L

11

12

21

22

[

4
L £
i=1

ol

o e

— trace (S.S)

trace (S.T )

trace (T.S)

trace (T.T )

=101~

4iPi4

—

(B41)

(B42)

(B43)

(B44)
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Finally, the matrix Lk is then given by:

wF
o
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4 4
- S.i8;4 z s'iti‘
j,i=l J J j'i._._l J J

4 4
L t..s,.

5 ) 'iti‘
j,i=l J J j,i=l J J

(B45)
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APPENDIX C

ITERATED EXTENDED KAIMAN FILTER. DETAILED EQUATIONS.

The Extended Kalman filter-equations for the Cartesian Coordinate

system representation of our tracking problem are given by equations

(3.11)-(3.18). Equations (3.13) and (3.14) are obtained from the

following equation for the linearized system:

B ™ B -1 * K OB BR ) (1)

where
=40 =
ng,k = Rk (€2)
6§k,k-l = ¢(T)-G§k_l'k_l (c3)

- A
i T N W e

The Extended Kalman-filter equation (3.13) is develcped from equation

(C1) through the special selection of linearization trajectory, namely:

RS TP (ce)

When the observation 2z is processed, Sk x is obtained, and the system is
r

relinearized about % . Then, after processing of and relinearization,
k P 908 %

sﬁk,k = 0, and also 65k,k-l = 0 in view of equation (C3). As we can see,
equation (Cl) reduces to equations (3.13) and (3.14).

However, the Extended Kalmanfilter does not utilize the improved

linearization trajectory gk X for the processing of the observation Zy .
r

This is done by the iteration scheme described by Fig. Cl. The g~vector

has to be decided upon through simulations.
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APPENDIX D

ITERATED LINEAR FILTER-SMOOTHER.

by Jazwinski [2].

approach, the equation

-8 A
Eie1 T B SR ED DR k]

We have:

-1
s(k, Ei) = kF(k, €.)P

P, i Pyl ,x

N A
Bipg = Begr,x T RO €02 o7 !
where

T T

Kletds £5) = Py i (g o0+ Wiy

Now, if we define:

T T -1
HO(HP o+ Weyy)

L(k+1, €,)
—i
which gives:

K(k+1, ei) = (k+1, ei)

P+l k"
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DETAILED EQUATIONS.

This iteration scheme is adapted to the Polar Coordinate system

In order to avoid the matrix invertion necessary in Jazwinski's

(D1)

(D2)

(D3)

(D4)

(D5)

(D6)

representation of our tracking problem, where the observation equation is

linear. That means some simplifications imposed on the iterator proposed

can be transformed, making it unnecessary to calculate §(k, ei) explicitly.
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equation (D1) can be written, inserting for Ri +1 and s(k, ei)z
L R R 0 A Lt TR WE R WY I

The resulting iterator is summarized on Fig. D1.
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APPENDIX E

DETAILED DERIVATION OF THE COVARIANCE EQUATIONS
FOR THE CARTESIAN KALMAN FILTER.

In this Appendix we intend to derive the scalar equations for the 2

priori and the a posteriori covariance imbedded in the matrix equations
(3.18) and (3.16). k

The purpose ‘s, if possible, to assimilate a deeper understanding
of the Kalman filter mechanism generating the expected variance on the
innovation signal.

In the following, we intend to utilize our knowledge of symmetry

in the covariance matrix to reduce the number of scalar equations from

16 to 19 equations.

Under these circumstances equation (3.16) reduces from the Joseph

form to the form:

P,x = RIIP ka1 (ED)
? where lﬁ‘ and Hk is given by:

A T T -1

¥ = (

%% 7 Pr, k-1 P i1 P (E2)
[cos ¢ sin ¢

3 Hk:lkkk- Rkk o o0 (E3)
,[ The variance of the innovation signal is given by:

2 _ T _
% = AP x-1"% * ¥k (E4)

ﬁ

PV m—
i

By inserting for l-lk from equation (E3) and utilize the symmetry fact

of the covariance matrix, equation (E4) can be transformed to:
-108-
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2 _1 2 2 .
Gk = R[Pll cos" ¢ + Pzzsm 1) P12 sin2¢] + v (ES5)

where the subscript k,k~1 are dropped on the elements of the covariance

matrix, and on R and ¢. The same is done in the following.

Now, equation (E2) can be written as:

- r, .1

%% 7 Pkt T2 (E6)

i G

k

Next we define:

2, 2 :

Nk = R Ok (E7)

3 Then the elements of the Kk-matrix can be calculated to be:

K., = R [P., cos ¢-P. . sind] (E8)

> 1k Nk 11 12

K, === [p._ cos ¢-P.. sin ¢} (E9)

3 2k TN 12 22

: K. =—= [P, cos ¢-P.__ sin ¢] (E10)

3k Nk 13 23

K, =<3[p., cos ¢-P_, sin ¢] (E11)

E 4k Nk 14 24

i Now, from equation (E6) we have:

= . 2 T

= z = L3 K 2
B Pex-1 - %" 'k (E12)

since the covariance matrix is symmetric.

- § Then, inserting from equation (E12) in equation (El) we ge' -

z
% P =p -2 -k - K2 (E13)
B ok~ Bkl T % T % T K
4 :
B )
2 {
] :
£ :
% §x

3 % e . %
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Based on equation (E13) and equations (E7)-(Ell) we get the following

10 scalar covariance equations:

P’I]'_k = Pll;'k'l - EJ; [Pll cos ¢-1>12 sin ¢]2 (E14)
nﬁk = Pll‘:'zk;l - ﬁkl"[Pn cos ¢-p12 sin 4] [912 cos q>-1>22 sin ¢] (E15)
Pllcék = P];ék_“ ~ El—:; [Pll. cos ¢-—P12 sin ¢] [P13 cos ¢ - P,y sin ¢]
(E16)
p’l‘:lk = P’l‘;k'l - —Nizpll cos q>-1>12 sin ¢] [Pl 4 08 ¢-pz 4 sin ¢] (E17)
Pl;ék = P];:'zk—l - %‘k— (p,, cos ¢—P22 sin ¢]2 (E18)
P];;k = ’Pgék-l - -Nl‘;{-PIZ cos ¢ - P, sin ¢] [P13 cos ¢-P23 sin ¢)
{E19)
Plzc;k = Pj;&k'l - -ﬁi[Plz cos cb-Pzz sin ¢] [P14 cos ¢"P24 sin ¢] (E20)
P];:;k = P];ék-l - il]; [P, cos ¢-P,, sin ¢1° (E21)
Pl;;k = P];"lk—l - -ﬁi—- [P13 cos ¢-P23 sin ¢) [P14 cos ¢-P24 sin ]
(8222)
P];;k = Plzak-l _.‘ﬁi— [1’,121 cos ‘¢~P24 sin '¢]2 (£231]

In equations (E14)-(E23), Wost of tlie variables on the ¥ight hand side

of the equations have got their subscript k,k-1 dropped.

-
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Now, the only place the range R enters the equations (El4)-(E23), is

through Nk' From equation (E7) and (ES5) Nk can be given by:

2 2 2
= P =P i 2

Nk Pll cos"d + P,, Sin & P, sin 2¢ + R Wk (E24)
Equivalently, if we define:

02 = p.. sin’$ + P__ cos’$ + P, sin 2 (E25)

R 11 22 12

equation (E24) can be written:

N =P _ +P_ _ - 02 + sz (E26)

k 11 22 R k

Equations (E14) through (E23) gives the a posteriori covariance after

an observation intergration, based on the a priori covariance prior to

the observation integ&ation.

Timeupdating of the covariance, i.e., calculating the a priori co~
variance at the next sample, based on the a posteriori variance at the
current sample, is performed through equation (3.18). By multiplying

out this matrix equation, utilizing the symmetric properties of the

covariance matrix, we get the following 10 time updating equations:

k+1,k _ _k,k k,k 2 _k,k 4 -
Pll = P11 + 27 913 + T 913 + (T4/4) -Vlk (B27)
k+l,k _ _k,k k,k k,k 2. k,k
P12 = P12 + T(P23 + P14 )y + T 934 (E28)
k+1,k _ _k,k k,k
p13 = P13 + T P33 + (1'3/2).vlk (E29)
k+1,k _ _k,k k,k
Pl4 = 914 + 7T P34 (E30)

At~
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Pl;;l'k = P’;ék + 27 p’;;" + sz’;;k + (44, (831)
Plzc-;l,k - Plzcék . I,l;‘.}k (E32)
p’;‘;l'k = p’;;k +T - P’;;k + (13/2) -V, (B33)
- P:;k TV =24
Py =B (E35)
P];zl,k - Bk Py (E36)

As we can see, the time updating equations increases the covariance

{except for P34), while the observation integration equations reduces

the covariance again. It is clear from equations (E14) through (B23)

that an increasing R reduces the size of the reduction, resulting in

higher values on the covariance matrix elements. The exact dependence

on Pk k of R, however, has to be decided through simulations.
L4

. | i g R
i s SR VNN AL P, St e
st i B R R
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APPENDIX F

CALCULATION OF INITIALIZATION VALUES FOR RANGE

AND VELOCITY. NUMERICAL EXAMPLE.

In order to demonstrate the use of the results from section 4.3 and

4.4, the following example is constructed:

; yA ’
T4— —>

O |

Fig. Fl, Example.

In Fig. F1 we have:

GR T

b

P R b et A C U
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RO = 5000m vsx = vsx = 0 m/sec
0 1l
\7x = 20 m/sec Vsyo = Vsyl = 10 m/sec
vy =0 vsx2 = «10 m/sec
At = 25 sec v = 0 m/sec
sy,

Based on this data, we can calculate Axsi' Aysj, i=0,1,2, and ¢i,

i=0,1,2,3, We ..ve:

AxSO B Axsl = Aysz =0
by o =by, =250m
Ax_, = ~-250 m
¢y = 0°
9, = tan”! :5-6%%’-5—6———]* 6.01°
$, = tan" :%’&g'%fb'] ® 12,53°
65 = tan”" :—"-“"—50(1,.7_230 ]“ 21/25°

Hi

ot stpli)
it

Equation (4.51) then gives

o Pttt
W W

TR

500 sin(¢2-¢l)[sin ¢3-cos ¢3]

R, = — : : 8 .
2 0 sin ($,-¢,) sin(¢,-$,)-3 sin(d,~4,) sin(d,~9,) 5001.54 m

j= From equation (4.25) and (4.24) we obtain:

1 sin(¢1-¢0) sin ¢2
v, =% RO sin(¢,-¢1) - sin ¢o X 20.01 m/sec

i1
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1 (sin (9,-%,) ¢
[%

Sin(¢2‘¢l) —-cos ¢0) + 500] = 0.01 m/sec
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APPENDIX G

CALCULATION OF INITIAL VARIANCE FOR RANGE, 02

R
L)Y

0

If range, RO' is calculated from equation (4.49), the initial value

of 02 can be calculated.
Ry

We assume that the different bearing observations are statistical
independent and uncorrelated, with variance og. The bearing observations
are further statistical independent and uncorrelated with the observers
position increments, Axi, Ayi, i=0,...,2. The different position in-

crements are also assumed statistical independent and uncorrelated, with

s 2 2 2
variance ¢ =0 =0
XS ys s

We now define:

x1 = Atl[AtB(Axso + Axsl) - (tz-to)Axszl (G1)
vl = AtltAt3(Ayso + Aysl) - (t2-t0)Ay52]

X2 = (ty-t) (At Ax_ -At Ax_,] (G3)
y2 = (t3—t0)[At2Ayso~AtlAysll (G4)

Now, by use of equations {Gl)-(G4), equation (4.49) can be written:

sin(¢2-¢l)[y1-5in¢3— xl.cos ¢3] + sin(¢3-¢2)[x2 cos ¢1-y2 sin¢1]

R, = T - > T
0 At,At3 51n(¢3—¢0)51n(¢2—¢1)-At2(t3-to) . sxn(¢l‘¢o).51n(¢3-¢2)

(G5)
As we can see, equation (G5) can be expressed as:

-116~
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RO = _f__(¢ol¢ll¢2l¢3lX1:leyl:Y2) {G6)

If we develope the Taylor expansion for Ro about some nominal value

Eo, given by:

EO = £($0! Ell -621 ¢3' ;a-l ;‘Ec ﬁ' .3-5) (G7)

and neglecting . -ms higher than first order, we get:

= of 9f of of of of

9 R, =R, + 35— 8¢, + = 8¢, + 55— 3¢, + o5 &b, + o= Ox, + == 8x
0 "0 "3, 0 " 39,771 " 3¢, 73 3,773 " 3x, 1 3x, 2
o 2f (G8)

+ 3= 0y, + =— Oy
8yl 1 By2 2

b ey
Vi 5 M

4 e

E We now define:
f GRO = Ry"R, {e32}]
. We then have:

Ry

By making use of equation (G8), (G9) and (G1l0) we get:
2 of |2 (af )2 (af )2 df )2] 2 ‘(af 2 of 2
g — = +la~1 +{sJ11. 0, +f=—= ¢ Al el ) +
R, {(3¢0) 99, 39, 3¢, ) 9x, “x1 dy, ¥l
of 2 of 2
(-5-;;; sz) + (———-ayz GYZ) {(G11)

Now, naming the demoninator in equation (G5) D, and the nominator N,

we calculate the different derivatives of the f-function. We have:
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fF N . ;
¢O = - ;2- . [—At1 A..3 cos (¢3-¢0)sm(¢2-¢l) + At:2 (t3-to)cos(¢l-¢o)

|

Q)

sin (¢3‘¢2) ]

(G12)
%%; _D}é. [-(+ cos(d)z—fbl) lyl sin¢3-xl cos¢3] + sin (¢3-¢2) [x2 sin¢1+y2cos¢1])-n +

N- (AtlAt351n(¢3-¢o)cos (¢2-¢l) + At2 (t3-to)cos (¢1-¢o)sin(¢3—¢2))]

(G13)
£ 1 ' _
%E; = ;3[ (cos (¢2-¢1) lylos:.n¢3—xl cos¢3]-cos(¢3-¢2) [x2 coscbl-yz s:.ncbl])-D-
N- (At - At sin(P,-¢,)cos(9,-¢,) + At (t, -t )sin(§,-¢,)cos (95-0,))]
(G14)
-g—% = ;%[ (sin(¢2—¢l) fyl cos(b3 + x1 sin¢3] + cos (¢3—¢2) [x2 cos¢l—y2 sin¢1]).n-
N (AtlAt3cos (¢3"¢O) sin (¢2-¢1) -At2 (t3-to) sin (d)l—(bo) cos (¢3-¢2) )1
(G15)
f 1 .
%:—l_ ==-3 51n(¢2—¢l) -cos 4)3 (G16)
o _ L sin(¢,-4.)sind (G17)
oyl D 2771 3
-a-f?f = % Sin(¢,-9,) cosd, (G18)

R
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A Lin(¢.~b)sin ¢ (G19)
3y2 D 37%; 1

Further we have:

2 _ 9x1l \2 [ox1l \2 axl 212

%1 = [(an_ )*(an ) * (an )]Os (G20a)
sO sl s2

2 2 ” 2 2.2

01 = Atl . [A’(.3 + At3 + (t2-t0) ]cs (G20b)

y 2 2

2 (agl )‘ (ayl ) (ayl ) ] 2

o2 = + + o (G21a)

vyl [ aAyso BAySl BAxS2 s

2 2.,.2 2 2, 2

°y1 = Atl[At3 + At3 + (tz—to) ]os (G21b)

2 ax2 \2 ox2 \2 2 e 12 pe2,0,2, .2

T2 =[(3Ax ) * (?)'Ax_) ] - Oy = (Egmtg) {bey¥he, oy (622)

s0 sl
2 _ ‘_3)2__\2 92 V21 . 22 L e e )2 (acdeatd)o?
°y2 _[(aAyso) + (aAy51 oy (e, ty) (a 5 l) s (G23)

We now define:
3 2
KL= I (%;—) (G24)
i=0 Vi
and

2 [as )2 (af )2 (af )2 (af 2
K. » 0= {|=——0o0 +\lm— ¢© + | +l+——0C G25
2 s (Bxl x1 sz x2 ayl Gyl 3y2 Y, (G25)

Then equation (G11l) can be written

?41;'“#ﬁ R A e

ik

[P
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0'2 = K1 02 + K2 02 (G26)
Ro ¢ s

The variable K2 can be calculated to be:

_1l .2, 2 32 2 o N2,,.2.,.2
K2 = Dz fsin (¢2 ¢1)(2At3 + (t2 to) + sin (¢3 ¢1)(t3 to) (At2+Atl)]
(G27)

Further, K1 can be expressed as:

Kl = J% [N°K3 - 2N.D-K4 + D2K5] (G28)
D

where K3, K4 and K5 are given by:
X3 = 2{AtiAt§[cosz(¢3-¢o)sin2(¢2-¢1) + sin2(¢3-¢o)cosz(¢2-¢l)]
+ AtlAtzAt3(t3-to)sin2(¢l+¢3-¢o-¢2)
+ Bt (eym¢0) *[eos” (9, -9g)sin’ (6,-0,) + sin® (§ -8 jcos? (b,=,)1}
(G29)
K4 = AtlAté{Z(yl sin¢3-x1 cos¢3)sin(¢3-¢o) cosz(¢2—¢l) +
[yl cosg, + x1 sind,] cos(¢3~¢o)sin2(¢2-¢l) - [x2 cosé -y2 sing,].

cos(¢3-¢2)sin(¢l+¢3—¢o—¢2) + [x2 sin¢l+y2 cos¢1]sin(¢3-¢2)cos(¢2~¢1)
sin (¢3-¢0) }

+ Atz(t3«to){{yl sin¢-x1 cos¢3]cos(¢2-¢1)sin(¢l+¢3-¢o-¢2)

~-[yl cos¢3 + x1 sin¢3] sin(¢2-¢l)sin(¢1—¢0)cos(¢3-¢2)} (G30)

R e
P
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. 2 . 2 . 2 . 2
= gin (¢2-¢l)[yl cos¢3 + x1 s;n¢3] + sin (¢3-¢§)[X2 51n¢1+y2 cos¢1]

+ 2{cosz(¢2-¢l){yl sin¢3—x1 cos¢3]2+cosz(¢3-¢2)[x2 cos¢1—y2 sin¢l]2

—cos(¢2-¢l)sin(¢3—¢2)[yl sin¢3-xl cos¢3][x2 sin¢l+y2 cos¢l]
-cos(¢2-¢1)cos(¢3-¢2)[y1 sin¢3-x1 cos¢3][x2 cos¢l—y2 sin¢l]

+ sin($,-,)cos($,~¢,) [yl cos¢3+x1 sin¢3][x2 cos, -y2 sin¢l]}

(G31)




APPENDIX H

INITIAL VALUES FOR THE VELOCITY COMPONENTS
OF THE COVARIANCE MATRIX

From section 4.3, equations (4.24) and (4.25), we have the following

expressions for the target velocity components:

- sin ¢°} + Axso + Ax .+

1 At sin(¢l-¢o)sin¢2
0 sl

0 At sin(¢2-¢l)

51n¢2 At Atz
EIETE——E_)*COS ¢1[At so~Mx q1 - sxn¢1[Z€; Ayso‘Aysi]}
(H1)
At sin(¢,-¢,)cos¢
_ 1 ) |bg)cosd,
VY - tz-to [Ro Atl sin (¢2_¢1) COS¢0} + Ayso + AYSl +

cos ¢2 At A

§I§?$—:$_T— {cos ¢1 [At Ax Ax 1! -sing [ At Ay <o~ ysl]}]

(H2)
The following accuracies are assumed defined:
Isx = sy % )
°R, \ (63)
" %0 T %, T %

-122~
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Now, in order to simplify the equatiions to be developed, equations

(H1) and (H2) can be written:

Vx = fl(AxSi' Aysi' R F ¢ol ¢1l ¢2) (34)

where i=0,1l.

We now develope the first order Taylor expansion for f1 and f2

about some nominal values for Axso, Axsl, Ayso, Aysl' o ¢0' ¢l' ¢2,

named Axso, Axsl, Ayso, Aysl’ Ry ¢0' ¢1 and ¢2. Then we will get the

following equations:

3f1 afl afl Bfl afl
§v. = 57— 8Ax , + 55— 8Ax . + 75— SAy  + =5 8Ay . + =— OR
x BAxso s0 ansl sl 3Ays0 s0 BAysl sl BRO 0
of of of
1 1l 1
+ 5= 00 + 5= 0¢. + 55— 6¢ (H6)
3¢0 0 3¢l 1 3¢2 2
af af 3f of £
2 2 2 2 2
0v, = = 8Ax , + zx— 8Ax_. + 77— SAy_, + = S0y . + z= SR
Y anso s0 BAxSl si 3Ayso s0 aAySl sl BRO 0
of of of
2 2 2
+ =2 80+ == 8h. + == &b (HT)
3¢0 0 3¢l 1 8¢2 2
where:
Sv = Ve TV =V - fl(-) {H8)

Gvy =v -v v - fz(-) (H9)

R ———
'




-124-

6Axso = Axs0 ~ Axso (H10)
GAxsl = Axsl - —;1

Sty = Ayso-A'iso (H12)
by , = by  -Ay, (H13)
SRy = Ro-'ﬁo (H14)
8o = $5-9, (H15)
8¢, = ¢,-9, (H16)
8¢, = ¢9,-9, (H17)

The velocity components of the covariance matrix are now given by:

) 2 .
E{(sv )} E{%v 6v }
= x x ¥ (318)

2.
Pyq Pag E{Gvyﬁvx} E (Gvy) }

We now assume that Axbo, Axsl, Aysc, Aysl' ar ¢0, ¢1 and ¢2 all are

statistical independent. Then we have
., )2 of. \2 ('af )2 9f, \2
- 2y . 1 e S Y o L ] 2
Py = Blvp} = [(ng / +(3Axs) o= )+l ) ) o

2

of ) 2 [[3E, \2 ('f W (3f, \2

~t).o ok — N

(3"0 R, +[(a¢ ) +\73 J + %, ) ]Ud’ (H19)

Fririsowrmes mnimsi wen L
I "
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5f. \2 /Of 2 [3f
_ 2 _ (252 ) ( 2 ) (
Py = E{(8v)7) = [(a'A'x'so * +

' Bfl of
Pyy = Py3 = V{GVXGVY} =

of 2f
i S T S S
BAxso BAxso ansl BAxsl
9f, df

5 Bfl of

2 2
. . o
3by_, by, ' 3by_, aAysl] s '

Ef_l.,?_f_202 +[8f1 352 of
R, OR

3 9
o Ry Ly To, " 3¢, 36, 09, 3, )¢
The different derivatives of fl and f2 axre given in the following:
. |
Bfl 1 %.+ sin ¢2 cos ¢l ‘ At2J
BAxso tz-to sin(¢2-¢1) At1 (H22)
?fl _ 1 [1 i sin ¢2 cos ¢1 ] 23)
3Axs1 ty=ty 51n(¢2-¢1)
of sin ¢ At .
1 1 2 .
= - - - - - Sln¢ —_ (324)
SAyso tz-to 51n(¢2-¢1) 1 At1
of sin ¢
1 1 2
= — T . - sin 4) (H25)
aAys1 t2 to 31n(¢2 ¢1) 1
?fz 1. cos ¢2 cos ¢1 ) At2
8Axso t,ty 51n(¢2-¢1) Ati

(H26)
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afz 1 cos ¢2 cos ¢1 27)
BAxsl t2-t0 51n(¢2—¢r1)
sz 1 [ ) cos ¢2 « sin ¢l ] Atz] 28)
BAYSO t,tg sin (¢2-¢1) Atl
zzz - Et [1 + cos.¢2( Si: fl] (H29)
Ys1 %27 sin(¢,-¢,
Bt 1 [At2 sin(¢,-¢,)sin ¢, i s ] 301
BRO tz--t0 Atl 51n(¢2-¢1) 0
3f2 -1 [Atz sin (¢1-¢o)cos ¢2 cos ¢ ] (431)
BRO t=ty Atl sin (¢2-¢1) 0
nono [l TeEs L]
o “27% 1 SRRy
sz N R, [At2 cos (¢1-d>0) cos ¢2 sin & ] 33)
3¢0 t2-t0 Atl sin (¢2—¢1) 0
?__f._l. i 1 [R . At2 sin ¢2 . Sin(¢2-¢o) ) sin ¢2 {
a(!‘1 % 0 Atl sin2 (¢2-¢1) sin2 (¢2-¢1)
Atz At2 }
- .A?; Axso - Axfi1 cos ¢2 + -A_t; Ayso-Aysl sin ¢2 (H34)
E.f_z. R [R At2 cos ¢b2—sin(¢2-¢o) N cos ¢2 {
3.  t -t oAt " 2. 2
1 20 1 sin (¢2 ¢l) sin (¢3 ¢1)
[At:2 [At:2
LA, Ax o - A"sl]“s 9, + bt Bygo = vy, |sin ¢2} (£35)
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3, 1 \% . At, sin(¢ =4 )sing, , sin¢, {
3, t -t 10 At L2 2
2 20 1  sin (¢>2 ¢l) sin (¢2 ¢1)
At
2 At
cosd. | 5 Ax_, -Dx ] - sind. | "2 _ ]}
l[At1 s0 sl 1 [Atl AYSO Aysl | (H36)

sz _ 1 tR At2 sin(¢1-¢p)cos ¢l . cos ¢ .{
3¢2 Y 0 At"1 s.in2 (¢2-¢1) s:‘m2 (¢2-¢1)

At At
cos cbl[lﬁz—— Ast - Axsl] - sin ¢1‘[_AtiAyso-Aysl]} (H37)
1 1

R O ™ b a4
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